
HIPOWERED CONSORTIUM

March 8, 2023

Technical University of Denmark

Technical University of Munich

University College Algebra

University of Rijeka

University of Trieste

March 8, 2023

Contents

I Parallel computing 7

1 Parallel systems 9

1.1 Introduction . 10

1.2 Computer architecture . 11
1.2.1 Von Neumann architecture . 11
1.2.2 Harvard architecture . 12

1.3 Moore’s law . 13

1.4 Parallel computer architectures . 15
1.4.1 SISD . 15
1.4.2 SIMD . 16
1.4.3 MISD . 19
1.4.4 MIMD . 20
1.4.5 Cluster, grid and other concepts . 22
1.4.6 ccNUMA . 26

1.5 Network architectures . 28
1.5.1 Bus . 29
1.5.2 Ring . 30
1.5.3 Star . 30
1.5.4 Mesh . 31
1.5.5 Hypercube . 31
1.5.6 Fat tree . 32
1.5.7 Fully connected network topology . 32
1.5.8 Crossbar network . 33
1.5.9 Multistage interconnection network . 33
1.5.10 Concluding remarks . 34

1.6 Current trends . 35

2 Parallel programming 37

2.1 Parallel programming concept . 38
2.1.1 The dam break problem . 38
2.1.2 Job and data distribution . 39

2.2 Parallel program analysis . 44
2.2.1 Amdahl’s law . 45
2.2.2 Gustafson’s law . 46
2.2.3 Reduced efficiency and its causes . 47

2.3 Parallel programming models . 49
2.3.1 Parallel programming on a SM system . 49
2.3.2 Parallel programming on a DM system . 50
2.3.3 Parallel programming using the data distribution strategy 52

2.4 OpenMP and MPI . 53
2.4.1 The Poisson problem . 53
2.4.2 MPI implementation . 54
2.4.3 OpenMP implementation . 66

2.5 GPU computing . 69
2.5.1 CUDA . 69

II Executing programs and code in HPC environment 73

1 Workload managers 75

1.1 Introduction . 76

1.2 SLURM . 77

1.3 PBS . 79

1.4 Alternative solutions . 80
1.4.1 LSF . 80
1.4.2 MOAB / TORQUE . 80

2 Using the SLURM workload manager 81

2.1 Introduction . 82

2.2 Commands . 83

2.3 Scripts . 88
2.3.1 Resource requests . 88
2.3.2 Common parameters . 89

2.4 Examples . 91
2.4.1 Shared memory examples . 91
2.4.2 Distributed memory examples . 91
2.4.3 GPU jobs . 92
2.4.4 Hybrid problems . 93

III Problems and examples 95

1 OpenFOAM 97

1.1 Introduction . 98

1.2 Creating a Linux environment on your computer 99
1.2.1 Download and install VirtualBox . 99
1.2.2 Download a Debian image . 99
1.2.3 Create a new Virtual Machine . 100
1.2.4 Installing Debian on the VM . 100
1.2.5 Configuring the VM . 102
1.2.6 Installing OpenFOAM . 103

1.3 Simulation of a bubble column reactor . 105
1.3.1 Mesh generation . 107
1.3.2 Physical properties and phases . 108
1.3.3 Turbulence model . 111
1.3.4 Boundary and initial conditions . 111
1.3.5 Solver settings . 113
1.3.6 Simulation results . 114

1.4 Simulation of complex fluid dynamic fields . 118
1.4.1 Rayleigh-Bénard convection in a cylindrical cell . 118
1.4.2 Wave loads over fixed rectangular pontoon . 128

2 Altair CFD 135

2.1 Introduction . 136

2.2 Numerical model . 136

2.3 Performance comparison . 138

3 MGLET 141

3.1 CFD code MGLET . 142

3.2 Applications . 142

3.3 Performance optimisations . 143
3.3.1 MPI-level optimisation . 143
3.3.2 SIMD-level optimisation . 144
3.3.3 GPU optimisation . 147

4 Tree codes 149

4.1 Introduction . 150

4.2 N-body simulations . 150

4.3 The tree algorithm . 151
4.3.1 Tree construction . 151
4.3.2 Computing the mass distribution for each tree node 152
4.3.3 Tree walk and force calculation . 153

4.4 The GADGET4 code . 154
4.4.1 Compilation . 155
4.4.2 Building the GADGET4 code . 155
4.4.3 Running the GADGET4 code . 156
4.4.4 Parallelization options . 157
4.4.5 Parameterfile . 158
4.4.6 The GADGET4 tree algorithm . 159
4.4.7 Domain decomposition in the GADGET4 code . 160

4.5 Post-processing tools . 166
4.5.1 Gadgetviewer . 166
4.5.2 Splotch . 167

5 Evolutionary Computation with JGEA 171

5.1 Evolutionary computation . 172
5.1.1 Genetic algorithms . 172

5.2 Evolutionary computation software . 176

5.3 JGEA structure and components . 177
5.3.1 Problem . 177
5.3.2 Solver . 178
5.3.3 Individual . 180
5.3.4 Listener . 182

5.4 Experimental evaluation: two case studies . 183
5.4.1 JGEA scalability . 184
5.4.2 JGEA extensibility . 187

5.5 Concluding remarks . 190

References 191

Part I

Parallel computing

Introduction
Computer architecture
Moore’s law
Parallel computer architectures
Network architectures
Current trends

1. Parallel systems

10 Chapter 1. Parallel systems

1.1 Introduction

University of Rijeka

Parallelism is nowadays evident in a majority of the devices that surround us;
computers, phones and a wide range of IoT devices utilize some type of parallelism,
i.e. they execute certain tasks concurrently. On a hardware level, processor microar-
chitectures are inherently parallel. Processors are built to be able to execute multiple
instructions at a time and typically have multiple cores, each of which can execute its
own set of instructions. Graphic processors are an extension of this principle and a
prime example of massive parallelism at a hardware level. Hardware advancements,
however, without proper software support are meaningless. Finding solutions for com-
prehensive tasks, problems and domains is typically not possible on either traditional
or modern computer architectures if they utilize sequential code. The serial comput-
ing concept (computing on a single processor/using a single process) is a limiting
factor since complex problems require an immense amount of time. Consequently,
parallel computing was born. In essence, parallel computing incorporates hardware
components and software into a system that allows seamless simultaneous execution
of calculations/code.

The complexity of engineering problems has over the past decades grown ex-
ponentially. Previously conducted experimental tasks are commonly replaced with
extensive and comprehensive simulations. This transition is not exclusive to engineer-
ing; biochemists and pharmaceutical companies utilize supercomputing resources to
simulate protein folding, which is essential in the development of new drugs. Machine
learning and AI rely on extensive computational resources to formulate models which
provide insight into complex interactions and allow event predictions. In the field of
fluid mechanics, mechanical engineers simulate interactions in vast domains where
said physical domains are described through high-resolution networks of nodes and
elements. Pressed by short turnover times, parallel computing has become invaluable
to scientists and engineers.

1.2 Computer architecture 11

1.2 Computer architecture

University of Rijeka

Historically, computers can be divided into two main groups: fixed program
computers and stored program computers. The fundamental advantage of a stored
computer is the ability to execute different tasks i.e. they can be programmed.

1.2.1 Von Neumann architecture

Modern computers are an extension of the stored-program concept introduced by von
Neumann, often referred to as Princeton (or von Neumann) architecture [Weinzierl,
2021]. According to von Neumann, a computer should contain several key components:

◦ an arithmetic/logic unit (ALU).

◦ a control unit (CU).

◦ a memory unit (MU).

◦ input/output (I/O) devices.

ALU is designed to execute calculations. It incorporates registers, a form of local
memory. CU manages devices and signaling, and directs instruction execution and
data flow. Similarly, it has an instruction register. These two components are typically
combined and constitute a central processing unit (CPU). The main memory contains
all the data and instructions. Input and output devices allow the input of data (or new
instructions) and output of the information to the user. Finally, buses are the main
information interchange channels that ensure information transfer between different
components of a computer. A schematic overview of a von Neumann computer is
given in figure 1.1.

Figure 1.1 A von Neumann architecture.

Von Neumann architecture has its limitations which are mainly related to data
transfer. In essence, the throughput limitations of system buses (the rate at which the
data is fed to the CPU) force the CPU to idle while waiting for data. It is theorized
that the only method to combat this is a radical new design. Nevertheless, different
methods are being employed to mitigate this bottleneck such as caching (L1, L2, L3
cache), prefetching, speculative execution, multithreading, etc.

12 Chapter 1. Parallel systems

1.2.2 Harvard architecture
Harvard architecture can be interpreted as a variant of the von Neumann design where
instruction and data storage are physically separated i.e. they use separate instruction
and data caches as well as memory buses [Smith, 1988]. This is significant as it allows
simultaneous access to the instructions and data thus partially overcoming the von
Neumann bottleneck. A schematic overview of Harvard architecture is given in figure
1.2.

Figure 1.2 Harvard architecture.

A modified Harvard architecture is an extension of the proposed concept with
relaxed stipulations regarding memory separation: a common address space is used,
however, caches are separated. This architecture displaced the original concept and
has mostly replaced it. Modern CPUs also employ this approach hence a CPU can
be classified as modified Harvard architecture. However, a computer as a whole
employs the von Neumann architecture (no separation in memory). Modified Harvard
architecture is typically found in microcontrollers, digital signal processors, etc.

1.3 Moore’s law 13

1.3 Moore’s law

University of Rijeka

Moore’s Law is an often-cited remark given in 1965 by the CEO of Intel, Gordon
Moore, which states that the number of components (i.e. transistors, resistors, diodes,
or capacitors) in integrated circuits doubles every year. This statement has been revised
in 1975 and stipulates that the number doubles every two years [Dongarra and van der
Steen, 2012]. This observation has held since and is thus often considered a "law".

The observation was based on then-current empirical evidence and is commonly
linked to both the transistor count and the overall increase in performance. Figure 1.3
depicts the increase in the transistor count since the 70s.

Figure 1.3 Increase in device transistor count since the early 70s [Roser et al., 2022].

Moore’s Law has held for almost 50 years, although it somewhat slowed down
as of 2016/2017 with estimates that say the period has increased from two years
to approximately two and a half years. Recent calculations suggest it takes ≈ 2.1
years to double the transistor counts. In other words, certain computer minimization
technologies are reaching the physical limits of what is possible, hence in order to
keep the continuation of the increase in computing power, the development of new
technologies and approaches is of great importance. Figure 1.4 depicts the yearly
performance improvement on the TOP500 supercomputer list.

14 Chapter 1. Parallel systems

Figure 1.4 Supercomputer performance development since the early 90s [TOP500.org, 2022].

1.4 Parallel computer architectures 15

1.4 Parallel computer architectures

University of Rijeka

The overall structure of the computer i.e. the architecture of the computer, to a
greater extent, determines the feasibility of a performance uplift (i.e. acceleration)
above the serial/sequential performance. Programmer’s input i.e. level of the code
parallelism also greatly affects the speed of the execution. Another important factor
is the ability of a program compiler to generate efficient code for a given computer
platform. In many cases, it is difficult to assess and discern the impact hardware and
software have on the computational speed (performance of the program).

Properties of a parallel computer and hardware specifics are typically expressed
through architectural classification models which group similar performing computers
based on performance and common features i.e. architecture. The most comprehensive
classification methodology covering a wide range of computers from personal to vector
computers and parallel computers with high performance is Flynn’s taxonomy (1966)
[Gebali, 2011]. The classification is based on four English letters:

◦ S single.

◦ I instruction.

◦ M multiple.

◦ D data.

These four letters are used to define four main and distinct types of computer architec-
tures [Gebali, 2011]:

◦ SISD single instruction single data. Single processor machines.

◦ SIMD single instruction multiple data. Multiple processors. All processors
execute the same instruction on different data.

◦ MISD multiple instruction single data. Systolic arrays. Uncommon.

◦ MIMD multiple instruction multiple data. Multicore processors and multi-
threaded multiprocessors. Each processor is running its instructions on its local
data.

In addition to the previous classifications, parallel computers can be further divided
into two principal groups based on memory organization [Gebali, 2011]:

◦ multiprocessors computers with shared memory.

◦ multicomputers computers with distributed memory.

1.4.1 SISD

This group represents conventional serial computers that consist of a single processor
connected to the memory. The processor executes a program that specifies a series of
read/write operations on memory. Such a computer is often called a von Neumann
computer [Weinzierl, 2021] and the processor a scalar processor.

Home PCs from the early 21st century were mostly SISD while most of the software
commonly in use today on home PCs still employs the SISD principle. By connecting
multiple SISD computers through a computer network, an architecture known as

16 Chapter 1. Parallel systems

multiple SISD computer (multicomputer) can be derived, in which each processor
executes commands independently of other processors. An example of such a parallel
computer is the Beowulf cluster, classified as a distributed memory MIMD (DM-MIMD)
machine [Becker et al., 1995].

Figure 1.5 a) SISD computer, b) multicomputer.

1.4.2 SIMD

Single Instruction Multiple Data (SIMD) computers are a type of parallel computer.
SI means all processing units execute the same command (instruction) at any time
while MD refers to the fact that each processor can operate on a different data element.
Instructions are conducted simultaneously [Gebali, 2011]. SIMD classification includes
three types of computers that are very different in terms of architecture:

◦ parallel computers with a large number of processors (210 to 214) which simul-
taneously execute the same commands on different data i.e. processor arrays.
This type of computer is no longer relevant but is sometimes used for special
purposes.

◦ vector computers that operate on vectors of similar data. They have a distinct
processor structure that allows the processors to execute commands in quasi-
parallel mode only when working with vectors and not scalars.

◦ computers based on GPGPU processors i.e. general purpose graphics processors
[Nielsen, 2016].

SIMD computers can also be classified into two sub-classes based on memory organi-
zation:

◦ SIMD computers with shared memory.

◦ SIMD computers with distributed memory.

SIMD computers with shared memory, vector computers

This subclass of SIMD computers is essentially equivalent to a single-processor vector
computer. A vector computer is a machine that performs arithmetic operations partic-
ularly efficiently on vectors and is hence especially important in scientific calculations
where calculations with matrices and vectors are particularly common. Vector comput-
ers are several times faster when running operations on vectors rather than on scalars
[Siegel, 1979, Gebali, 2011].

The key distinctiveness of a vector computer is its arithmetic unit, the so-called
arithmetic tube, i.e. pipeline, which performs arithmetic operations on vector elements

1.4 Parallel computer architectures 17

consecutively, thus increasing the computational efficiency. The pipeline is similar to a
production line in a factory; different processing sequences are performed on different
parts of the product on the production line. For example, when summarizing two
vectors x and y and using the floating-point approach, the operation s = x + y can be
defined with steps (a) to (f):

(a) the exponents of two floating-point scalars (which are elements of a vector) are
compared to determine the smaller of the two exponents.

(b) the decimal part of a number with the smaller exponent is modified so that the
exponents for both numbers are equal.

(c) decimal parts are added together.
(d) the summation result is normalized.
(e) validity control of the performed floating point operation.
(f) rounding of the result.

The process of adding two vectors, registers and arithmetic tubes can be seen in figure
1.6.

Figure 1.6 Vector addition on a vector computer.

Manufacturers of vector computers that were at the time leaders in the field of
computing are CRAY, NEC, Hitachi, Fujitsu, etc.

SIMD computers with distributed memory
SIMD computers with distributed memory are sometimes referred to as processor-array
machines or processor arrays. Each processor in an array executes the same command
but on different data, with no need for mutual synchronization of the processors.
Instructions that need to be executed by individual processors are regulated and
issued by a central processor. Typically, processor arrays utilize a so-called front-
end processor attached to the central processor which is used for I/O operations or
offloading/calculations if the array or the central processors are unable to do so. The
interconnection network used in this type of machine is always a 2D grid [Dongarra
and van der Steen, 2012]. The main parts of a DM-SIMD machine are, therefore:

◦ control processor.

◦ processor array consisting of many processors (1024 or more) each with its
memory.

◦ front-end processor.

With computers of this architecture, it is possible to turn off some of the proces-
sors in the array, under certain logical conditions. In that case, excluded processors
are on hold, which consequently reduces the overall system performance. Another
unfavorable situation is when the processor needs the data that is in the memory of

18 Chapter 1. Parallel systems

another processor. This data transfer impedes performance (long waiting times). This
is especially problematic if the situation occurs simultaneously on multiple processors
or even on all processors.

Therefore, in order to take the advantage of the positive aspects of a processor array,
they are employed for specific tasks e.g. signal processing (digital signal, radar signal,
etc.), image processing, Monte Carlo simulations, etc. It is evident that the presented
use cases do not require or require minimal communication between processors in the
array. An example of a distributed memory SIMD computer is given in figure 1.7.

Figure 1.7 SIMD computer with distributed memory.

GPGPU processors
The majority of the high-performing computers today, both desktop and supercomput-
ers, rely on CPU-GPU interdependence. GPGPU use allows for significant speedups in
cases where so-called data-parallel models are to be evaluated. These include physics
simulations, encryption/decryption, scientific computing, AI use, etc. [Trobec et al.,
2020]. This advantage is, however, lost, in cases where considerable communication is
needed i.e. communication between different threads.

Figure 1.8 Schematic comparison of CPU and GPU architectures.

Generally speaking, each processor, whether in a CPU or a GPU, has its cache and
access to shared DRAM. GPUs utilize many Arithmetic Logic Units (ALU) but lack the
shared cache, which limits the overall communication between parallel threads.

1.4 Parallel computer architectures 19

Figure 1.9 CPU bottleneck: communication pathway between memory and ALU.

On the other hand, CPUs, or rather their ALUs, have comparatively slow memory
access i.e. this represents a bottleneck. Consequently, hybrid designs are usually em-
ployed i.e. GPGPU accelerated CPUs/nodes to take the advantage of both technologies.

Figure 1.10 Use of accelerators in supercomputers. GPGPUs are increasingly common, with NVIDIA
GPUs dominating the market [TOP500.org, 2022].

1.4.3 MISD
Multiple Instruction Single Data (MISD) machines are generally uncommon. It is ar-
gued that e.g. neural networks can be interpreted as the MISD concept representatives

20 Chapter 1. Parallel systems

[Gebali, 2011]. Since the fundamental requirement is the ability to conduct multiple
operations on the same data, pipeline machines can also be seen as MISD machines.
Another common example is systolic arrays. An overview of an MISD architecture is
given in figure 1.11.

Figure 1.11 MISD architecture schematic.

1.4.4 MIMD
Multiple Instruction Multiple Data (MIMD) parallel computers are currently the most
common. They are characterized by the ability to synchronously or asynchronously
execute different instructions on different data. Modern multi-core computers belong
to this category, although they can also include elements that due to their architecture
might better correspond to some other category [Gebali, 2011]. MIMD computers
will be analyzed according to respective memory arrangement concepts i.e. MIMD
computers with shared memory (SM-MIMD) and MIMD computers with distributed
memory (DM-MIMD) will be discussed.

MIMD computers with shared memory
Processors in shared memory MIMD systems (SM-MIMD) can concurrently perform
different tasks and access the same address space of a common (shared) memory
through an interconnection network. Memory coherence is typically managed by the
operating system/software (cache coherency protocols). Hardware-based protocols
do exist and usually offer faster mechanisms for maintaining memory consistency,
however, they introduce hardware complexity and are thus not as common [Gebali,
2011]. The number of processors in an SM-MIMD system is rather small, typically
less than 32. UMA (Uniform Memory Access) multiprocessors commonly referred to
as SMP (Symmetric Multiprocessors) are viewed as SM-MIMD machines due to the
centralized nature of the memory. The architecture of an SM-MIMD computer is given
in figure 1.12.

Figure 1.12 SM-MIMD system.

In addition to standard multiprocessor computers, special types of multiple vector

1.4 Parallel computer architectures 21

computers can also be considered SM-MIMD machines. Previously mentioned vector
computers with a single vector processor can only be considered a special case of a
more general MIMD classification as there are also vector computers with multiple
vector processors. Multiprocessor vector computers use a crossbar network topology
given that the maximum number of processors in such systems is relatively small and
a low-performance network topology would be unsuitable for fast vector processors
[Dongarra and van der Steen, 2012].

In today’s high-performance systems, an architecture based on an exclusively
shared memory concept is rare, with distributed memory systems being a more suit-
able alternative. This is mostly due to the limited scalability of shared memory systems.
Memory access and associated bus contention are the main problems associated with
SM-MIMD systems. They can be partially alleviated by including local caches. Com-
monly, crossbar or multi-stage crossbar networks are employed to ensure throughput
hence to minimize the complexity, a lower number of CPUs is used.

ccNUMA (Cache Coherent Non-Uniform Memory Access) architectures are com-
monly considered SM-MIMD computers. This is mainly due to the fact that these
computers, although they have physically distributed memory, from a programmer’s
standpoint, utilize a shared memory concept, which exists at a logical level (software-
based) [Dongarra and van der Steen, 2012].

MIMD computers with distributed memory

MIMD parallel computers with distributed memory (DM-MIMD) are currently the
most prevalent. They are often referred to as multicomputers. Unlike MIMD com-
puters with shared memory (SM-MIMD) where the distribution of data is completely
transparent to the user and accessible to all processors, users on a DM-MIMD system
must explicitly distribute the data to each processor and explicitly regulate the data
exchange between processors. Data access is accomplished through a network [Gebali,
2011, Dongarra and van der Steen, 2012]. Such requirements from the user/program-
mer and the overall programming complexity are the main reasons why this computer
architecture was not widely accepted despite being available. The current resurgence
and rapid development of DM-MIMD parallel computers can be attributed to:

◦ availability of mass-produced decently performing cheap processors (e.g. Intel).

◦ lack of technological advancements that have hampered further development of
high-performance processors (e.g. RISC).

◦ development of standards for communication software, which includes MPI
(Message Passing Interface) and older PVM (Parallel Virtual Machine) message-
passing standards.

◦ development of highly-scalable interconnection networks.

By transferring a segment of the parallelization load from the hardware level to
the software/communication level, as is the case with DM-MIMD parallel computers,
despite drawbacks, certain benefits can be gained, amongst which is the most important
the not-so-theoretical ability to outperform any other architecture. Furthermore, unlike
shared memory systems, the bandwidth scales well with the number of processors.
The downsides of the DM-MIMD architecture include:

◦ communication between processors is slower than on SM-MIMD machines, hence
the synchronization overhead is of an order of magnitude higher.

22 Chapter 1. Parallel systems

◦ a large disparity in the access times for data stored locally and data stored in
the memory of another processor forces programmers to carefully develop and
structure their code in order to minimize access times to the data that is not
stored locally. Consequently, codes are usually more complex.

◦ inadequate load balancing across distributed processors can hinder performance.

It is obvious that DM-MIMD parallel machines rely on high-performing interconnection
networks, their topology and bandwidth, which are the main limiting factors in the
overall performance efficiency of a DM-MIMD system [Dongarra and van der Steen,
2012]. Figure 1.13 depicts a DM-MIMD machine.

Figure 1.13 DM-MIMD system.

1.4.5 Cluster, grid and other concepts
Massively Parallel Processing (MPP) and Symmetric Multi-Processing (SMP) computers
were the dominant high-performance computers during the second half of the 90s and
at the beginning of this century. MPP computers were comprised of a larger volume
of RISC processors. SMPs, although often classified as slightly slower performing
computers, had higher prevalence and were still sufficiently performant to be used
in multi-processor systems where processors have been typically connected through
crossbar interconnection networks and shared common memory space. Reported
single-processor machine designs include both single-processor and vector computers.
SIMD computers were somewhat relevant during the 90s, however, they have mostly
disappeared since.

Figure 1.14 A surge in the number of clusters occurred around the 2002-2004 period [TOP500.org, 2022].

1.4 Parallel computer architectures 23

At the beginning of this century, the rise of the clusters began, with an inflection
point being reached in late 2003 when the architecture began to dominate as shown in
figure 1.14. Clusters and MPPs today account for the majority of the most powerful
supercomputers, as evidenced by figure 1.15, which depicts the representation of
individual computer architectures among the 500 most powerful supercomputers in
the last thirty years. The TOP500 list tracks the most powerful computers in the world
according to the standard LINPACK test.

Figure 1.15 Distribution of major computer architectures in the TOP500 rankings from 1993 to 2022
[TOP500.org, 2022].

The progressive growth of clusters and constellations throughout the twenty-first
century can be attributed to the overwhelming availability of cheap AMD and Intel
processors. Intel processors are nowadays prevalent in supercomputers, with IBM
and IBM-based custom designs still being utilized in some of the best-performing
supercomputers. RISC-based (Sunway, CN) and ARM (Fugaku, JP) architectures
are also present. AMD has only recently managed to revitalize its supercomputer
business (Frontier, US). Since the early 2010s, CPUs have been increasingly coupled
with accelerators. Nowadays, all the major systems utilize, typically Nvidia or AMD-
provided, accelerators (GPGPUs). Figure 1.16 shows the distribution of different chip
architectures from 1993 to 2022. The dominance of the x86-64 architecture and the
downfall of the vector machines and RISC processors is evident.

24 Chapter 1. Parallel systems

Figure 1.16 Distribution of chip architectures (technologies) in TOP500 supercomputers [TOP500.org,
2022].

The current HPC performance leader is the Frontier supercomputer located in Oak
Ridge National Laboratory, United States. It is comprised of 74 HPE Cray EX cabinets
that contain AMD EPYC processors and AMD Instinct accelerators. The system has
more than 8.7 million CPU cores and 37.000 GPUs. At its peak, it is more than three
times faster than the #2 supercomputer. Frontier is the first system that broke the
exascale barrier with a performance of 1.1 EFlop/s [TOP500.org, 2022].

Figure 1.17 Top performing supercomputers as of November 2022 [TOP500.org, 2022].

1.4 Parallel computer architectures 25

Cluster

The concept of cluster architecture experienced a strong surge a decade after the
emergence of the first cluster named Beowulf (NASA, 1994). Beowulf clusters in
general are simple computer clusters composed of common PCs connected by a local
area network. They are classified as multicomputers as they were originally built by
connecting multiple SISD computers [Dongarra and van der Steen, 2012]. Beowulf
nowadays represents a technology (methodology) of clustering computers to form a
parallel supercomputer. There are no software requirements that would define a cluster
as a Beowulf, although they typically do use Unix-like operating systems and rely on
MPI (Message Passing Interface). The development of cluster technology incentivized
large computer manufacturers to build their own clusters, hence the Beowulf concept
became mostly obsolete and its use is limited to scientific computing. The structure of
a typical cluster is given in figure 1.18.

Figure 1.18 Diagram of a typical modern cluster. Compute nodes are comprised of multiple processors
connected with a fast interconnect (e.g. crossbar). Multiple nodes are connected with an interconnection
network such as a fat tree, hypercube or torus.

The displayed schematic defines an architecture in which SMP (Symmetric Mul-
tiprocessing) nodes are connected in a cluster through an interconnection network.
Processors inside the SMP nodes (intranodal) are usually connected with a fast crossbar
interconnection which allows a smaller number of processors to directly communicate
with each other. Internodal connection is usually much slower, however, it is able
to connect a large number of nodes into a functional system. System manufacturers
typically use proprietary interconnections (Quadrics, Slingshot, etc.) or one of the
alternatives such as 1GEthernet, 10GEthernet, Infiniband, etc. to connect the nodes.

The core of an SMP-based cluster are massive compute nodes. Compute nodes
consist of one or more processors with shared memory. The number of processors
per compute node to a larger extent depends on the purpose of the system and target
use (i.e. application use), as well as on the manufacturer and the proposed design of
the system. Nodes are based on the shared memory principle (SM-MIMD) with the
whole system viewed as a parallel computer with distributed memory (DM-MIMD)
and called a cluster (in the narrow sense).

Constellation

Term constellation (in the narrow sense) refers to a specific type of cluster computer
(SMP cluster) in which the number of processors in the compute nodes is greater than
the total number of nodes, i.e. these are systems that have massive nodes or nodes in
which there is a larger number of processors (at least 4) [Dongarra and van der Steen,
2012].

26 Chapter 1. Parallel systems

Federated clusters

Federated clusters are loosely coupled systems of computers or more specifically
clusters. These systems have no interconnection network and can be architecturally
quite different, but operate as a single resource. They are often referred to as clusters
of clusters.

Grid

A grid is a type of computer system that enables the dynamic use of geographically
distributed autonomous subsystems depending on their availability, capacity, perfor-
mance and price. Grid computers are used to calculate large-scale computational
problems such as N-body simulations, seismic simulations, atmospheric and oceanic
simulations or protein folding (e.g. Worldwide LHC Computing Grid, Folding@home).
At its core, a grid computer is a cluster in which the LAN is replaced with a WAN
[Dongarra and van der Steen, 2012].

1.4.6 ccNUMA

Cache Coherent Non-Uniform Memory Access computers are most often included in
the cluster family in the broadest sense of the term. The basic difference is in memory
organization. On a hardware level, these computers are comprised of distributed
SMP nodes. These nodes are connected using an interconnection network, similar
to conventional clusters. The distinctiveness of ccNUMA computers is in the way
SMP nodes access memory locations on other nodes. All memory, which is physically
distributed, is addressed globally and all the data logically belongs to a single address
space. Since the data is physically distributed and shared memory exists only at a
logical level, access times can vary significantly, hence the inclusion of the NUMA in
the name [Dongarra and van der Steen, 2012]. A schematic overview of a ccNUMA
system is given in figure 1.19.

Figure 1.19 ccNUMA machine.

Term cache coherency infers that every variable must have a consistent value. The
consistency of the variables is manifested in the fact that local changes in the variables,
at a given node, are reflected globally [Dongarra and van der Steen, 2012]. Several
elements ensure the consistency of the variables:

◦ SBP (Snoopy Bus Protocol) individual cache memories track the transport of
variables to processors and refresh local copies of these variables.

◦ Memory directory is a special part of memory that enables tracking of all copies
of variables as well as their validity.

1.4 Parallel computer architectures 27

An important performance metric when analyzing ccNUMA systems is the NUMA
factor which shows the difference in latency when accessing data in local and remote
memory (remote memory latency is typically considered for a furthermost node). Since
all the data logically belongs to shared memory, ccNUMA systems can be considered
SM-MIMD computers, i.e. MIMD computers with shared memory. However, since
ccNUMA computers utilize software to create and maintain a shared memory space
when compared to systems with shared memory at a hardware level (classic SM-
MIMD), latency is higher by several orders of magnitude. Hence, although for a
given program memory space might appear as shared, programmers must be aware
of the computational costs writing and reading have when accessing distant memory
locations.

28 Chapter 1. Parallel systems

1.5 Network architectures

University of Rijeka

A network that allows direct connection between each processor in a system, i.e.
a fully connected network, is a superior connection design to any other option in
terms of computational efficiency. However, implementation of such an interconnected
system is rather complex, not to mention expensive, hence alternative topologies are
commonly used. The performance of an interconnection network primarily depends
on routing, flow-control algorithms and topology. Routing is the process of selecting
an optimal path for traffic in a network. The process of managing the rate of data
transmission between nodes is known as flow control, whereas network topology is the
arrangement of various elements (such as communication nodes and channels) in an
interconnection network. Among those mentioned, the network topology is the most
troublesome, as the overall efficiency of the network depends on it, yet the employed
design might not fit every user’s needs.

Manufacturers of interconnected computer networks typically classify and advertise
their products according to some of the key network performance parameters such as
latency, bandwidth and scalability. A cost-effective system provides good throughput
and low latency at an affordable price. Unfortunately, every network topology is not
able to transmit memory requests quickly enough to be efficiently used for parallel
computing. Interconnections have a major role in parallel computing hence a bottleneck
in this aspect will significantly impair the ability to quickly perform computational
tasks.

Interconnection networks can be classified into two main groups based on how the
nodes in the network are connected [Trobec et al., 2020]:

◦ in direct networks, nodes are directly connected to all their neighbors.

◦ indirect networks utilize switches to connect nodes.

Indirect networks are typically more common due to their flexibility and can be further
subdivided [Trobec et al., 2020]:

◦ non-blocking networks can always connect the source and destination regardless
of the currently established connections.

◦ in blocking networks, established connections block the creation of new connec-
tions between the source and destination even though they might be idle.

◦ blocking rearrangeable networks are adaptable i.e. an established connection
can be rearranged for a new connection to be established.

Latency
Latency represents the time that elapses from the moment the message is sent to
the moment when the message reaches its destination [Trobec et al., 2020]. The total
latency time can be divided into several types:

◦ latency at the MPI software level represents the time from the moment the send
command was issued to the moment of the execution of the received command
and it is measured by the ping-pong standard test.

◦ application-level latency is the time from a call to the communication library

1.5 Network architectures 29

function to the moment when the receive function on the receiver side excites
the MPI.

◦ latency at the hardware level.

◦ latency at the interconnection level.

Latency is measured in milliseconds and is often interchangeably referred to as a ping
rate.

Bandwidth

Bandwidth is the theoretical maximum data transfer rate through one channel in a
given time [Trobec et al., 2020]. In layman’s terms, it measures the maximum capacity.
Commonly employed units for bandwidth are Mbytes/s (MB/s) and Gbytes/s (GB/s)
while for serial channels it is given in Mbit/s (Mb/s) or Gbit/s (Gb/s).

Throughput

The amount of data that is transmitted through a communication link within a period
is called throughput. It is commonly referred to as the effective data rate or payload
rate. Bandwidth and throughput differ due to various technical issues, latency, packet
loss, etc.

Interconnection network parameters

Interconnection networks are typically described using graph theory, where a network
is modeled as a graph f (k,n), which consists of k communication nodes and n commu-
nication links (channels) between said nodes. This approach enables the definition of
parameters that can be used to classify networks [Trobec et al., 2020]. These parameters
include:

◦ node degree d is the number of neighbors of a node in a network.

◦ regularity is the property that states that all nodes have the same node degree.

◦ path represents a path from the source to the destination node.

◦ hop count is the number of nodes data traverses along its path.

◦ diameter lmax is the maximum distance between two nodes in the network i.e.
maximum hop count.

◦ complexity is the total number of connections or switches in the network.

◦ connectivity represents a minimum number of broken connections that would
cause a system crash.

◦ scalability ability of a network to withstand degradation due to the increase in
network size.

1.5.1 Bus

The bus is the simplest network topology. All processors are connected to a single
pathway, a bus, which can transfer a single piece of information at any given time.
Consequently, processors must usually wait in queue for the bus to become idle
before sending or receiving new information. A schematic overview of a bus network
topology is given in figure 1.20.

30 Chapter 1. Parallel systems

Figure 1.20 Bus network topology.

Implementation of the bus topology is rather simple and inexpensive. When it is
used to connect a smaller number of processors, the network can be effective with the
efficiency further improved by including local caches [Trobec et al., 2020]. For larger
systems, the contention is significant and makes the network ineffective.

1.5.2 Ring

The ring is one of the oldest network topologies. Processors are arranged in a consecu-
tive, linear fashion, in a ring, with every processor having only two neighbors [Trobec
et al., 2020]. Ring network topology is shown in figure 1.21.

Figure 1.21 Ring network topology.

1.5.3 Star

Star network topology is a centralized design where all the communication between
the processors is routed through a central hub. The hub is tasked with routing the
traffic and based on the number of processors in the network this can hinder the
performance [Gebali, 2011]. The network schematic is given in figure 1.22.

Figure 1.22 Star network topology.

1.5 Network architectures 31

1.5.4 Mesh
These types of networks are currently commonly employed in systems with large
numbers of processors and are considered successors to the older hypercube topology.

2D mesh and 2D torus
Processors in the 2D mesh are arranged in a rectangular manner so that every member
can be defined through its (i, j) label. Every processor has four neighbors, apart
from those on the edges of the network [Trobec et al., 2020]. If we assume that there
are n nodes in the network, the parameters of the network are as follows: d ≈ 2

√
n,

complexity 2n and connectivity 2.
2D torus design nullifies the topological deficiencies of the 2D mesh by arranging

processors in a toroidal structure. Consequently, processors on the edges have the
same number of neighbors as a typical centrally located processor in a 2D mesh. This
network topology is symmetric [Trobec et al., 2020].

3D mesh and 3D torus
3D meshes are a logical extension of their 2D counterparts. Functionally they are the
same. The primary difference is in the number of neighboring nodes which in three
dimensions is six. Similar deficiencies on the edges are apparent and are mitigated
in 3D torus design [Trobec et al., 2020]. For n nodes, parameters of the network are:
d = 1...

√
n, complexity 2n and connectivity 4. An overview of different 2D and 3D

topologies is given in figure 1.23.

Figure 1.23 2D and 3D meshes: a) 2D mesh, b) 3D mesh, c) 2D torus.

1.5.5 Hypercube
In an effort to better balance interconnection network quality and price, networks
have been developed based on the principle of the so-called hypercube. Each node in
a hypercube is connected to b = log2n neighbors, therefore the network can connect
n = 2b nodes [Trobec et al., 2020]. The dimensionality of the cube is n, hence they are
commonly called n-cube networks.

One of the key benefits is their symmetric nature, which means that the network
appears the same from every node, hence no special treatment for nodes is needed.
Moreover, it is highly reliable as it provides n alternative paths (disjoint paths) between
any two nodes, thus in the case of a failure of a given path, the network would

32 Chapter 1. Parallel systems

Figure 1.24 Principle of the hypercube network topology: a) d = 1, lmax = 1, b) d = 1...2, lmax = 2, c)
d = 1...3, lmax = 3, d) d = 1...4, lmax = 4.

continue to function normally. Two-dimensional meshes and trees can be embedded
in a hypercube in such a manner that the connectivity between neighboring nodes
remains consistent with their definition. For parallel systems with large numbers of
processors, 2D and 3D network topologies (e.g. torus) are the current state-of-the-art
topologies, although in recent years hypercubes have seen a resurgence.

1.5.6 Fat tree
When connecting a large number of nodes, the so-called fat tree topology is extremely
popular. This topology is based on the known structure of a tree. Congestion typically
occurs near the root of the tree due to the concentration of messages that traverse
through higher levels before descending to the target nodes. The fat tree solves this
problem by introducing additional connections at those tree levels, thus increasing the
bandwidth [Trobec et al., 2020].

Figure 1.25 Fat tree topology.

The term n-level fat tree defines a fat tree structure in which the number of
connections at the level closer to the root is n times higher than at the level above.

A simpler implementation is a binary tree network where each switch in the
network has three links and the processors are located at the top [Trobec et al., 2020].

1.5.7 Fully connected network topology
Each node in a fully connected network (direct network) is directly connected to all
other nodes. If we assume that there are n nodes in the network, there are in total
n(n− 1)/2 connections. The diameter of this network is 1. The network does not scale
well (requires too many connections) and is thus used only sometimes, for smaller

1.5 Network architectures 33

clusters or specific purposes (e.g. military applications).

Figure 1.26 Fully connected network topology.

1.5.8 Crossbar network
A crossbar network is built upon a simple two-dimensional grid of switches. Design
connects n inputs and n outputs (i.e. processors) and requires n2 switches. Analo-
gously to fully connected networks, any two members of the network can directly
communicate, if the required ports are free. In total, n concurrent connections are
possible. Communication is achieved through a change in the switch’s state. Conse-
quently, these networks are typically referred to as dynamic networks. If the port(s)
are occupied, all subsequent communication has to wait for the port(s) to be free. Due
to this, crossbar networks include arbiters that regulate queues [Gebali, 2011]. For
a MIMD system with a large number of processors, this network topology would
present a technologically too complex design with significant underlying costs. On
systems with a relatively small number of nodes, however, especially if those nodes
possess significant computing power, e.g. parallel vector machines, a fully connected
crossbar network is an obvious choice. Crossbar networks are commonly used in high-
performance small-scale shared-memory multiprocessors, routers for direct networks
and as a fundamental component of large-scale indirect networks. A schematic of a
crossbar network is given in figure 1.27.

Figure 1.27 A crossbar network.

1.5.9 Multistage interconnection network
One of the solutions to the crossbar topology problem is multistage interconnection
networks. They belong to the dynamic subgroup of networks. Inputs and outputs
are connected through a stage (set) of switches. These switches are fewer in number,
hence a single-stage design cannot connect all the outputs and inputs. By cascading
the single-stage switches, all the inputs and outputs can be connected, with significant

34 Chapter 1. Parallel systems

savings [Gebali, 2011, Trobec et al., 2020]. Level 1 switches in this design, unlike
single-stage topology, are connected to level 2 switches, etc., instead of being directly
connected to the outputs.

A typical example of a multistage interconnection network is the Omega network
(Ω). When connecting n · n sized Omega network, there are in total log2n stages with
n/2 switches per stage. In total n/2 · log2n switches are needed which is substantially
fewer than for a crossbar network (n2).

Figure 1.28 Omega network.

1.5.10 Concluding remarks
The most common interconnection networks used in the design of highly parallelized
machines are based on the following concepts: hypercube, fat-tree, torus, and full
crossbar. It is critical to emphasize the growing importance of interconnection net-
works, which is a direct result of the rapid increase in the number of processors per
parallel computer. Consequently, interconnection networks have been designed to
accommodate median (average) congestion rather than providing adequate bandwidth
to accommodate the so-called worst-case loads.

The current design philosophy implies traffic congestion, which is deemed ac-
ceptable due to cost savings. Consequently, new branches of computer science are
in development, that deal with the so-called congestion management. Congestion
management presupposes modern, adaptive networks, with reroute strategies, and
the field as a whole is extremely appealing from an engineering and mathematical
standpoint.

1.6 Current trends 35

1.6 Current trends

University of Rijeka

Even though semiconductor sizes are continuously being shrunk, with each gener-
ation physical production limits are being tested. Heat and heat-associated frequency
limits are a persistent problem. Physical limitations have directed the development of
processor architectures to immensely parallel designs which has in turn led to signifi-
cant advancements in the performance of massively parallel architectures. Multicore
systems (dozens or even hundreds of cores) with simultaneous multithreading and
asymmetric execution are of increasing interest. Consumer GPUs as of 2020 have
upward of 10000 cores and are indispensable as accelerators in complex HPC systems.
Existing massive core designs are slowly being replaced by simple power-efficient
cores (ARM), which, although comparatively worse-performing, offer better value both
in terms of initial investment as well as general performance/$. Overall performance
has steadily improved and HPC systems have crossed the exascale barrier in 2022.

Figure 1.29 a) Fugaku - ARM-based supercomputer with over 7 million cores. b) Frontier - first super-
computer to cross 1 EFlop/s. c) AMD Epyc CPU - processor built using chiplet design with ccNUMA
employed to schedule tasks. d) Nvidia RTX 3090 - consumer grade GPU with 10496 CUDA cores.

Parallel programming concept
Parallel program analysis
Parallel programming models
OpenMP and MPI
GPU computing

2. Parallel programming

38 Chapter 2. Parallel programming

2.1 Parallel programming concept

University of Rijeka

Knowledge of parallel computer architectures, memory organization, topology and
interconnection network characteristics is necessary in order to be able to adequately
develop a code/program and/or install a specific application. By following the parallel
computer classification principle defined by Flynn, a proper programming approach
can be adopted, in order to optimally utilise the parallel architecture.

Parallel programming concepts and models will be assessed on exampled i.e. simu-
lation of an engineering problem (dam break). Numerical calculations are assumed to
be conducted on a four-core parallel computer. Different parallel strategies will be ad-
dressed depending on the available computer architecture and software. The efficiency
of the parallelisation will be analysed and the appropriate program parallelisation
model recommended.

2.1.1 The dam break problem

As previously asserted, parallel programming will be assessed on a dam break test case.
The computational domain is comprised of two water tanks separated by a dam. The
water level is higher in the left tank. Figure 2.1 show the entire discretized domain of
the instantaneous dam break test case. Numerical simulation can be performed using
the finite volume method, finite element method, finite difference method, etc. Due to
the nature of the problem, it is possible to define the data as a matrix A(1 : n,1 : m).

Figure 2.1 Numerical domain of a dam break test case.

Let’s assume that for a given problem it is necessary to solve a system of partial
differential equations. Furthermore, let’s assume that at some point it is also necessary
to calculate the values of matrices A, B, C and vector d, with the x being the unknown
vector, although depending on the employed numerical scheme, this could vary. In
matrix form this can be written as:

(A + B + C) · x = d (2.1)

2.1 Parallel programming concept 39

The solution to this problem can be attained with a sequential code such as that given
in 2.1.

Algorithm 2.1 Dam break sequential code algorithm.

1 dec l are d(n),A(n,m),B(n,m),C(n,m)
2 do i = 1,n
3 d(i) = ... → get d
4 do j = 1,m
5 A(i, j) = ... → get A, B, C
6 B(i, j) = ...
7 C(i, j) = ...
8 end do
9 end do

10 x(i) = ... → solve system of equat ions

When formulating a parallelization strategy for a given problem i.e. dam break, it
is important to consider both processing and memory requirements. Parallel program-
ming, therefore, relies on:

◦ appropriate job distribution to processors.

◦ appropriate data distribution to processors (provided that a DM machine is used).

2.1.2 Job and data distribution
Fundamental parallelization strategies that can be utilised depending on the physi-
cal/numerical problem and parallel architecture type are job distribution, data distri-
bution, domain decomposition and in some cases functional decomposition.

Job distribution
The strategy behind the job distribution when calculating expression 2.1 is shown in
code snippet 2.2. Job distribution approach is shown for matrix A and 100 iterations.
Calculations for other matrices and vectors can be implemented in a similar manner.

Algorithm 2.2 Dam break job distribution.

1 compute A , i t e r a t i o n s 1−25 → ass ign to processor 1
2 compute A , i t e r a t i o n s 26−50 → ass ign to processor 2
3 compute A , i t e r a t i o n s 51−75 → ass ign to processor 3
4 compute A , i t e r a t i o n s 76−100 → ass ign to processor 4

According to this principle, the total calculation volume is distributed among
available processors. This mode of parallelization implies that all of the n iterative
steps to be carried out on p processors are distributed so that each processor calculates
only n/p iterations i.e. when utilising four processors, the first quarter of all iterations
is performed on the first processor, the second quarter on the second, etc. Such a
division of iterative jobs per processor is possible only if calculations can be performed
independently i.e. regardless of the results from other processors.

Data distribution
Data distribution strategy that would solve the problem outlined in equation 2.1 is
given in snippet 2.3. Given example of the data distribution among four processors for
matrix A should be implemented for the remaining matrices and vectors as well.

Algorithm 2.3 Dam break data decomposition.

1 A(1 : 20,1 : 50) → data assigned to processor 1

40 Chapter 2. Parallel programming

2 A(1 : 20,51 : 100) → data assigned to processor 2
3 A(1 : 20,101 : 150) → data assigned to processor 3
4 A(1 : 20,151 : 200) → data assigned to processor 4

With this type of parallelization, identical instructions (operations) are performed
on all processors although on different sets of data. This approach is typical for a
MIMD architecture, but can also be used on a SIMD machine.

Domain decomposition
In engineering practice, the most common parallelization strategy is the domain
decomposition strategy shown in figure 2.2. Domain decomposition is accomplished
at a higher level i.e. one level closer to the physical model, hence the entire approach
is less abstract.

For a four-core parallel machine, the entire computational domain is decomposed
i.e. split into four parts, each of which is assigned to its processor. Apart from
being assigned a subdomain, each processor must be given, prior to or at runtime,
a specific set of instructions as well as provided with boundary cell data innate to
the neighboring domain parts. The amount of data that must be exchanged between
the processors which are assigned neighbouring parts of the domain depends on the
method of the domain decomposition i.e. whether the domain segments overlap (e.g.
Schwarz method) or do not overlap (e.g. Schur complement method).

Figure 2.2 Dam break domain decomposition using four processors.

Figure 2.3 depicts a decomposed domain. Let’s assume that the cell-centered
finite volume method is used. Highlighted zone shows elements in the neighbouring
subdomains. In order to calculate a new value for ui, values at neighbouring cells,
including ui+1 which is in the adjacent subdomain, are needed. Depending on the
stencil of the numerical scheme, values in multiple adjacent rows might be needed
as well. Communication between processors is a major limiting factor in the overall
performance of a program in this case, hence proper decomposition is of utmost
importance.

Domain decomposition is typically achieved with an automatic algorithm, but
can also be performed directly i.e. manually, for simpler domains. Algorithms for
numerical domain decomposition commonly employ graph theory. In graph theory,

2.1 Parallel programming concept 41

Figure 2.3 Communication between boundary elements of subdomains.

the domain is depicted with a set of vertices and edges G(vertices, edges), which are
to be divided into k equal or approximately equal segments in a way that minimizes
the number of intersections between the edges and the dividing line. This concept is
depicted in figure 2.4.

Figure 2.4 Decomposition using graph theory.

From a computational standpoint, every vertex (point) in figure 2.4 represents a
computational load while the edges correspond to communication. The goal is to
minimize the communication (the least amount of intersections with the dividing
line) and appropriately distribute the load amongst the processors. This means that
for certain problems appropriate decomposition is not an "equal" split approach.
Balancing is particularly important if utilised processors have different performance or
the communication between them is inconsistent.

The majority of domain decomposition algorithms can be divided into the following
groups:

◦ simple algorithms.

◦ inertial method.

42 Chapter 2. Parallel programming

◦ spectral distribution method.

◦ Kernighan-Lin and related methods.

◦ multilevel methods.

Simple algorithms

The most common simple algorithm is the linear method. Vertices are assigned to
individual processors according to their indices in the original graph. This simple
scheme often gives surprisingly good results as the grouping of the vertices has
typically already been done during the initial indexing. In addition to the linear
method, the random method and scattered scheme can be utilised. The random
method assigns vertices to processors randomly whereas the scattered scheme assigns
vertices in the same manner in which the cards are dealt in a card game.

Inertial method

The inertial method is relatively simple and fast. In addition to the graph data, it also
requires geometric coordinates of every vertex. Vertices are seen as "heavy" points,
and their non-negative weight is determined in proportion to the computational effort
required to calculate the new state of a given point. Said computational effort is
approximately proportional to the number of points within the distance h of a given
point.

Spectral distribution

The spectral distribution uses the eigenvalues of the matrix generated from the graph
to define the distribution.

Kernighan-Lin method

The Kernighan-Lin method (KL) is in essence a local optimization strategy. Vertices
are swapped between different sets in order to minimize the number of graph edges
intersected by the dividing line. This method is typically not suitable for large graphs,
however, The Multilevel KL method can be used as an alternative.

Multilevel methods

All multilevel methods typically include three common phases:

◦ coarsening phase.

◦ partitioning phase.

◦ refining phase (uncoarsening).

In coarsening phase, smaller and coarser graphs are extrapolated from the original
graph, with each coarser graph created through contraction of the edges of the original
graph, according to a set methodology. As the edges are contracted, their two limiting
vertices are combined into a new vertex. These new vertices and edges contain the
"weight" of the original vertices and edges from which they were built, hence, in
a way, information about the initial graph is preserved. The partitioning phase of
the coarsest graph is achieved by one of the previously mentioned methods e.g. the
spectral method. During the refining phase, the graph is backward-reconstructed to
its original state with the partitioning repeated for every level of refinement. The KL
method is commonly used to re-partition each intradivision. The main phases of a
multilevel method are shown in figure 2.5.

2.1 Parallel programming concept 43

Figure 2.5 Phases of a multilevel method.

The most popular algorithms for domain decomposition that utilise described
principle are METIS, its parallel version PARMETIS and the CHACO algorithm. In
addition to the decomposition, these algorithms can also improve the quality of the
existing decomposition, provide dynamic re-decomposition of adaptive grids and
manage load balance after each modification of the adaptive network.

Functional decomposition
Functional decomposition is the least common decomposition approach, mainly due
to specific implementation requirements. The fundamental prerequisite is the ability to
perform different operations on each processor or compute node. Hence, only specific
types of computers can be utilised. This method of parallelization can be employed
to calculate complex physical models that consist of several relatively independent
lower level physical models. For example, when calculating a complex climate model
which consists of the atmospheric model, ocean model, Earth’s surface model and the
hydrological model, it is possible to separate said segments at a lower-level, provided
they use mostly independent data. Consequently, a single or a group of processors
could be tasked to calculate each segment of the climate model separately. If there is a
significant overlap i.e. data dependence between sub-models, excessive communication
and data exchange hinder the performance and other models should be used.

Functional decomposition can be employed for numerical analyses of the flow
around aircraft, with potential flow models used in one part of the domain and Navier-
Stokes equations in other. Similarly, hybrid domains which combine Lagrangian
particle methods and the Euler approach can be efficiently decomposed.

44 Chapter 2. Parallel programming

2.2 Parallel program analysis

University of Rijeka

The quality of the parallelized computer code, regardless of the parallelization
model, can be quantified with three distinct parameters:

◦ speedup.

◦ efficiency.

◦ scalability.

Speedup is the most important measure of the quality of parallelization. Efficiency
and scalability coefficients are typically used as supplementary indicative parameters.

Let’s define T(p, N) as the time required to solve a problem of a size N on p
processors, and T(1, N) as the time required to solve the same problem on a single
processor. Speedup S(p, N) can consequently be calculated as:

S(p, N) =
T(1, N)

T(p, N)
(2.2)

Given expression defines the degree of speedup i.e. how much faster is the code when
executed on N processors compared to a single processor? In an ideal case:

S(p, N) = p (2.3)

Real codes, however, are not ideally parallelized, hence it is necessary to determine the
efficiency i.e. how close are we to the ideal speedup:

E(p, N) =
S(p, N)

p
(2.4)

Occasionally, when measuring the quality of the parallelized code, speedup might
be larger than the theoretical ideal value, p, with efficiency E(p, N) > 1. This anomaly
is related to the problem size. When measuring the time needed for a single processor
to solve a given task, said task is typically scaled down in order to fit in the memory
which is addressable by a processor. Consequently, when the same task is run on
multiple processors, e.g. 512, individual batches allocated to the processors might
be small enough to fit in the processor’s cache, which makes the computational part
extremely fast and leads to unrealistic speedups. In order to eliminate these false
results or at least provide insight into potentially suspicious speedups, the scalability
Sc(p, N) coefficient is defined:

Sc(p, N) =
N
n

(2.5)

where N represents the size of the original, and n size of the scaled problem. The
scalability coefficient is relevant and calculated only if:

T(1, N) = T(p, N) (2.6)

For a computer with p processors, the scalability coefficient defines the size of a
problem that can be calculated in the same amount of time that is required for a single
processor to calculate a similar but smaller task.

2.2 Parallel program analysis 45

At the beginning of this section we stated that both memory and processors are
essential resources that should be considered when parallelizing a given problem. The
following notes briefly summarize key aspects of load and data distribution goals as
they relate to these resources:

◦ Computational load should be distributed across processors in a manner that
minimizes waiting and synchronization times i.e. processors should be assigned
jobs that are equally computationally demanding so that they have approximately
similar calculation times. This is typically achieved through load balancing.

◦ Data should be distributed with regards to the overarching computer architecture
so that the communication overhead/access times are minimal.

2.2.1 Amdahl’s law
Theoretically, the speedup from parallelization should be a linear function of the
number of processors. This, however, is not the case since most algorithms cannot be
fully parallelized. Speedup is typically near-linear for small numbers of processors
and then flattens out and assumes a constant value for large numbers of processors.

Amdahl’s law predicts the theoretical maximum speedup of a code as a result of
the increase in the processor count. The speedup is lower than in an ideal case since it
is limited by the sequential segment of the program. If we define the execution time of
a sequential part of the code i.e. the part of the code that cannot be parallelized as s,
then the parallelized segment equals q. The total execution time for a problem of a
size N on a single processor is the sum of sequential and parallel parts of the code:

T(1, N) = s + q (2.7)

For p processors the total time equals:

T(p, N) = s +
q
p

(2.8)

Speedup according to Amdahl’s law can therefore be calculated as:

S(p, N) =
T(1, N)

T(p, N)
=

s + q
s + q

p
(2.9)

Let’s assume, for simplicity, that the total time equals unit time. Consequently s+ q = 1.
Amdahl’s law can hence be formulated as:

S(p, N) =
1

1− q + q
p

(2.10)

It is evident that with the increase in processor count i.e. when p→ ∞ speedup is
limited by the sequential part of the code:

S(p, N) <
1

1− q
(2.11)

The asymptotic behavior of the speedup curves is therefore, according to Amdahl’s
law, understandable and expected. Speedup curves as functions of the number of
processors for different cases are shown in figure 2.6. If we consider the case that has
been run on 1000 processors with the sequential part of the code equal to 0.1%, the

46 Chapter 2. Parallel programming

overall speedup is S(1000, N) = 500 and efficiency E(1000, N) = 0.5. This means that
for heavily parallelized codes sequential parts should be reduced to a minimum, in
order to achieve appropriate efficiency and speedups, which is typically the case for
large test cases with extensive databases.

Figure 2.6 Amdahl’s Law.

2.2.2 Gustafson’s law
One of the key assumptions in Amdahl’s law is that the fraction of the parallelizable
code is constant regardless of the workload size i.e. workload is assumed to be fixed.
This view, however, is pessimistic and not true for large problems. Gustafson’s law
assumes that the execution time is constant and gives the theoretical speedup that can
be achieved with the increase in the number of processors.

Let’s define the execution time of a sequential part of the code as s and the
parallelized segment as q. For parallelized code utilising p processors, we can write:

T(p, N) = s + q (2.12)

For a single processor, the total time increases according to:

T(1, N) = s + q · p (2.13)

Let’s now calculate the speedup according to these assumptions:

S(p, N) =
T(1, N)

T(p, N)
=

s + q · p
s + q

(2.14)

2.2 Parallel program analysis 47

If we apply the simplification s + q = 1, theoretical speedup now becomes:

S(p, N) = 1− q + q · p (2.15)

Speedup curves as functions of the number of processors for different cases according
to Gustafson’s law are shown in figure 2.7.

Figure 2.7 Gustafson’s Law.

2.2.3 Reduced efficiency and its causes
The main causes of reduced efficiency of a parallel program that cannot be completely
avoided are communication and synchronization overheads. Communication presup-
poses the synchronicity of the processes that communicate. In case of inappropriate
load distribution, the processor that executes the instructions faster and reaches the
synchronization point sooner will have to wait until a slower process reaches the same
point in order to, e.g. exchange or update data. Sync requests, however, do not have to
necessarily be just for communication.

For problems and applications that rely on communication between the processors,
data replication might be a solution. Replication implies that the data assigned to a
given processor is already distributed to another processor. Concept induces additional
computational load on the system as a whole due to the duplication (multiplication)
of identical operations which are already executed on different processors. This
means that, in order to minimize the communication overhead, additional resources
i.e. memory and computational tasks can be utilised. Depending on the available
resources, this might not be an option, or not feasible regardless of the resources, hence
it is necessary to assess which approach is more suitable.

48 Chapter 2. Parallel programming

Communication overhead and data replication can be best understood through
an example. HITACHI SR8000 is a parallel system with a theoretical performance of
1 GFlop/s per processor while the interconnection latency is 6 µs. Interconnection
bandwidth is 300 MB/s. The latency when transferring a single bit of data is identical
to the time required to perform 6000 instructions. Let’s assume that we want to transfer
a domain segment containing 20 · 20 elements, with each element described with 5
distinct physical values (e.g. velocity, pressure, etc.). This means that we need to
transfer 2000 variables, each in double precision format. In total, 16KB of data needs
to be transferred. Given the interconnection bandwidth, we can calculate the time
needed to transfer said data, which is approximately equal to 53300 operations on a
processor. Even if we neglect latency, it is evident that the communication overhead
has a significant effect on the overall processing time.

2.3 Parallel programming models 49

2.3 Parallel programming models

University of Rijeka

Parallel programming models are closely related to the computer architecture and
implemented parallelization strategy i.e. job distribution, domain decomposition, etc.
Typically three distinct models are discussed:

◦ Parallel Programming on a SM System (Open Multi Processing - OMP).

◦ Parallel Programming on a DM System (Message Passing Interface - MPI).

◦ Parallel Programming Using the Data Distribution Strategy.

2.3.1 Parallel programming on a SM system
This type of parallelization is used on systems that utilise either physical or logical
(ccNUMA) shared memory concept. Parallelization can be typically achieved by
inserting specific commands into the sequential code which delineate parallel code
segments. Loops are usually parts of the code that are parallelized. Communication
and data distribution are typically either not addressed or, depending on the compiler,
can not be managed by the programmer. As of 1997. a standardized set of compiler
commands, libraries and system variables for parallel programming of SM computers
exists called OpenMP or OMP (Open Multi Processing). OMP parallel commands can
be easily integrated into Fortran or C/C++ code.

One important feature of the OMP protocol is its adaptability to different program-
ming concepts i.e. same code can be used in both sequential and parallel mode. When
compiling a sequential code, OMP commands are interpreted as comments. In parallel
mode, commands can be recognized by corresponding compilers: !$OMP in Fortran,
c$OMP in Fortran77 and #pragma omp in C/C++. Implementation of OMP protocol is
shown on a previously defined sequential code (2.1):

Algorithm 2.4 Sequence of code parallelized using OMP protocol.

1 dec l are d(n),A(n,m),B(n,m),C(n,m)
2 !$OMP PARALLEL DO
3 do i = 1,n
4 d(i) = ... → get d
5 do j = 1,m
6 A(i, j) = ... → get A, B, C
7 B(i, j) = ...
8 C(i, j) = ...
9 end do

10 x(i) = ... → solve system of equat ions
11 end do
12 !$OMP END PARALLEL DO

OMP protocol, as seen in code snippet 2.4, uses the so-called fork-join model i.e.
code at a given point branches and begins parallel execution and at a subsequent point
joins and resumes sequential execution (Figure 2.8).

Described method of parallelization, which is in essence fairly automatic, provides
great freedom, flexibility and ease of parallelization. Ease and freedom, however, are
only apparent as programmers must be familiar with the sequence of the code that is
to be parallelized since there is a chance that parts of the code that have dependencies
or parts that can not be parallelized for other reasons are marked for parallelization.

50 Chapter 2. Parallel programming

Figure 2.8 OMP fork-join model.

2.3.2 Parallel programming on a DM system

As the clusters (DM-MIMD) grew in size and numbers, a standardized method for
efficient communication between distributed resources was needed. Unlike their pre-
decessor, monolithic supercomputers, clusters are significantly less integrated and
typically contain several thousands or tens of thousands of distributed processors.
Consequently, clusters heavily rely on and are limited by interprocessor communica-
tion.

Standards used for messaging in parallel distributed systems are PVM (Parallel
Virtual Machine) and MPI (Message Passing Interface). MPI has over the last thirty
years supplanted the older PVM standard and expanded upon it significantly. Apart
from portability, MPI introduces improvements in communication performance, allows
topology specification, etc. Cluster manufacturers typically issue their MPI versions
which are optimized for a given architecture and interconnection. Newer versions
of MPI standards that are yet to be widely adopted are MPI-2 and recently MPI-3.
Transition to newer standards is rather slow as most applications do not utilise any of
the newer functions while the dynamic process management introduced in MPI-2 is
irrelevant for systems that use batch scheduling.

Open source version Open MPI is also in active development. Large number of MPI
versions tailored to specific architectures, interconnections and applications led to a
divergence with different implementations excelling in one area and lacking in another.
Open MPI is a joint project that aims to merge different MPI versions developed
by individual manufacturers and research laboratories into a unified MPI standard
which is aware of the architecture and interconnection topology i.e. it includes all
manufacturer-built features specific to a given interconnection.

MPI is a standardized and portable messaging system that due to its universality
can operate on a large amount of different parallel architectures. The MPI standard
defines the syntax and semantics of a core of library routines for users who write
parallel codes in Fortran or C/C++. MPI standard provides to users who develops
parallel codes the following:

◦ the ability to send and receive data and messages.

◦ the ability to create processes on remote processors or computers.

2.3 Parallel programming models 51

◦ the ability to monitor the status of a remote processes.

◦ the ability to send messages and signals to other programs.

Unlike previous parallel models, the programmer using the MPI standard must
explicitly define data allocation and communication specifics, which is both a drawback
and at the same time an advantage as it allows great flexibility in parallelization.
Migration from the sequential code to parallel is complex and requires substantial
input. Control over all aspects of the code is explicit. This is certainly an advantage
because it allows applications to be used on different parallel computer architectures.
MPI model is intended for use on machines with distributed memory, but can be
effectively used on systems with shared memory as well.

MPI applications use master-worker process organization. This means that a single,
central process, named master, induces and manages all of the worker processes that
execute a certain task. Programmers typically start the master MPI process which then
induces i.e. activates all the workers and distributes the necessary data. Figure 2.9
shows a master-worker paradigm when four processes are utilised.

Figure 2.9 Master process P0 initializes workers P1-P3 and distributes data if needed.

After activating all the processes, master process completes his part of the code
like all the other workers. If necessary, data can be subsequently exchanged between
now equivalent processes according to an explicitly defined communication strategy
(Figure 2.10).
Sequential code depicted in 2.1 can be parallelized according to the MPI standard:

Algorithm 2.5 Sequence of code parallelized using MPI standard.

1 dec l are d(n/4),A(n/2,m/2),B(n/2,m/2),C(n/2,m/2)
2 do i = 1,n/2
3 d(i) = ... → get d
4 do j = 1,m/2
5 A(i, j) = ... → get A, B, C
6 B(i, j) = ...
7 C(i, j) = ...
8 end do
9 end do

10 Call MPI_Send(...)
11 Call MPI_Recv(...)

52 Chapter 2. Parallel programming

Figure 2.10 Communication is explicitly defined by the programmer when using MPI standard.

2.3.3 Parallel programming using the data distribution strategy
Code to be parallelized using the data distribution approach relies on programmers to
distribute the data among processors. Typical data to be distributed are vectors and
matrices. High Performance Fortran (HPF) is the software standard governing this
type of parallelization. As certain parts of this methodology are difficult to implement,
it was often omitted from compilers and has since in most cases been replaced by
the OMP-based parallel processing. Code snippet 2.6 depicts HPF parallelization
approach.

Algorithm 2.6 Data distribution using HPF.

1 !HPF$ PROCESSORS pr(4) → number of processors
2 dec l are d(n),A(n,m),B(n,m),C(n,m)
3 !HPF$ DISTRIBUTE A(block,block),B(block,block),C(block,block)
4 !HPF$ DISTRIBUTE d(block) → data d i s t r i b u t i o n
5 do i = 1,n
6 d(i) = ... → get d
7 do j = 1,m
8 A(i, j) = ... → get A, B, C
9 B(i, j) = ...

10 C(i, j) = ...
11 end do
12 end do

In HPF, code parallelization and communication are governed by the compiler.
Successful implementation hence is directly linked to proper data distribution. Funda-
mental question is how to distribute the data. Nonoptimal distribution will result in
intensive communication between the processors, which will be forced to access the
necessary data from the memory of other processors, hence the overall program will
be several magnitudes slower compared to the sequential code. An obvious solution is
data replication, especially if there is significant overlap in data.

Proper data distribution is of primary importance in HPF, but unsuccessful imple-
mentation will only affect the overall performance and not the accuracy of the results,
since they are not affected by the distribution (unlike OMP). Strategy is extremely
efficient, yet restrictive, as only certain algorithms can utilise it. HPF scales well and
can be used on both SIMD and MIMD architectures.

2.4 OpenMP and MPI 53

2.4 OpenMP and MPI

Italian National Institute for Astrophysics

Partial differential equations play an important role in many branches of science
and engineering. The Poisson problem is a partial differential equation (PDE) that is
widely applied in many applications. We use this problem as a means for describing
the features of MPI and OpenMP that can be used in solving PDEs. We introduce
the MPI notion of virtual topology, which allows us to manage a grid of processes,
describing many of the variations of the basic send and receive operations supported by
MPI.

2.4.1 The Poisson problem
The Poisson problem in two space dimensions x and y takes the form:

∂2u
∂x2 +

∂2u
∂y2 = f (x,y) in the interior (2.16)

u(x,y) = g(x,y) on the boundary (2.17)

An approximate solution can be found using a square mesh (also called a grid) consisting
of points (xi,yi), given by

xi =
i

n + 1
i = 0, ...,n + 1,

yj =
j

n + 1
j = 0, ...,n + 1

with n + 2 points along each edge of the mesh. The approximate solution ui,j is found
only at the points (xi,yi). Using the mesh the Eq 2.17 can be rewritten as

ui−1,j + ui,j+1 + ui,j−1 + ui+1,j − 4ui,j

h2 = fi,j (2.18)

where h = 1/(n + 1). Our aim is to solve the latest equation for ui,j everywhere on the
mesh. One approach is to rewrite the Eq. 2.18 as

ui,j =
1
4
(
ui−1,j + ui,j+1 + ui,j−1 + ui+1,j − h2 fi,j

)
(2.19)

iterate by choosing values for all mesh points ui,j and then replace them by using

uk+1
i,j =

1
4

(
uk

i−1,j + uk
i,j+1 + uk

i,j−1 + uk
i+1,j − h2 fi,j

)
. (2.20)

This convergent method is known as Jacobi iteration. C code for this is given below.

C Code 2.1 Core algorithm of the Jacobi iteration using C.

1 double u [n + 2] [n +2] , unew[n + 2] [n + 2] ;
2

3 f o r (i n t i =1 ; i <=n ; i ++)
4 f o r (i n t j =1 ; j <=n ; j ++)
5 unew[i , j] = 0 . 2 5 * (u [i − 1] [j] + u [i] [j +1] + u [i] [j −1]
6 + u [i +1] [j] − h * h * f [i] [j]) ;

54 Chapter 2. Parallel programming

Figure 2.11 Approximation for 2-D Poisson problem, with n = 5. The boundaries of the domain are
shown in gray.

2.4.2 MPI implementation
To parallelize this algorithm using MPI, it is required to parallelize the loops of the
iterations distributing the data, namely the arrays u, unew, and f , across the MPI
processes. The task is deciding how to assign MPI processes to each part of the
decomposed domain. Several approaches are possible for domain decomposition,
defining the application topology or virtual topology. The discussion about the best way
for application topology to be fitted onto the physical topology of the parallel computer
is beyond the scope of this Chapter.

Jacobi with 1-D decomposition
The simplest decomposition is shown in Figure 2.12, where the physical domain is
sliced into slabs along the vertical direction (i.e. 1-D domain decomposition), while the
arrays u, unew, and f are replicated across the MPI processes. This approach is not the
most efficient in terms of memory usage, because the arrays are replicated across MPI
process instead of to be distributed. The piece of code 2.2 provides such a domain
decomposition into slabs:

C Code 2.2 1-D domain decomposition code.

1 . . .
2 i n t rank , NTasks ;
3 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
4 MPI_Comm_size (MPI_COMM_WORLD, &NTasks) ;
5

6 /* get the reminder i . e . take i n t o account uneven
7 decomposition of points among the processes */
8 const i n t rem = (n + 2) % NTasks ;
9

10 /* get the amount of data f o r each MPI process
11 − chunk i s supposed to be >= 1 */
12 const i n t chunk = (n + 2 − rem) / NTasks ;
13

14 /* get the s l a b dimension along v e r t i c a l d i r e c t i o n */
15 i n t incr , o f f s e t ;
16 i f (rank < rem)

2.4 OpenMP and MPI 55

17 {
18 i n c r = chunck + 1 ;
19 o f f s e t = 0 ;
20 }
21 e l s e
22 {
23 i n c r = chunck ;
24 o f f s e t = rem ;
25 }
26 const i n t s t a r t = ((rank * i n c r) + o f f s e t) ;
27 const i n t end = (s t a r t + i n c r) ;
28

29 /* MPI rank handles the subdomain with the fol lowing ranges :
30 −[s t a r t −1 , end+1] rows (x_ i points , inc luding ghost points) .
31 −[0 , n+1] columns (y_i points) ;
32

33 func t ion to handle communications i s missing
34

35 Core c a l c u l a t i o n
36 f o r (i n t i = s t a r t ; i <=end ; i ++)
37 f o r (i n t j =1 ; j <=n ; j ++)
38 unew[i , j] = 0 . 2 5 * (u [i − 1] [j] + u [i] [j +1] + u [i] [j −1]
39 + u [i +1] [j] − h * h * f [i] [j]) ; */
40 . . .

Figure 2.12 1-D domain decomposition, with n = 5, across three MPI processes. Black dashed boxes show
the computational domain of each MPI process. Red dashed box shows the computational domain, with
ghost points, for the MPI process with rank = 1.

Looking at the Figure 2.12, the calculation of the element u[i][j], handled by the
MPI process with rank = 1, will require the element u[i − 1][j] that belongs to the
MPI process with rank = 0. This will imply that data must be exchanged between
neighboring MPI processes, and consequently, the array managed by each MPI process
must be expanded to hold data from other processes. The elements of the array that
are used for MPI communications are called ghost points.

With such a domain decomposition, each process with rank = m sends data to the

56 Chapter 2. Parallel programming

Figure 2.13 Two-step MPI communication between contiguous processes (i.e. rank = m and rank = m + 1).
Data to be communicated is shaded. The mesh points are shown as black circles, while the ghost points
are shown as unfilled circles. During the first stage (on the left), the process with rank = m sends data to
the process with rank = m + 1 and receives data from the process with rank = m− 1 (not shown on the
sketch). During the second stage (on the right), the process with rank = m sends data to the process with
rank = m− 1 (not shown on the sketch) and receives data from the process with rank = m + 1.

process with rank = m + 1 and then receives data from the process with rank = m− 1,
as sketched in the left part of the Figure 2.13. After that, the order is reversed, so data is
sent to the process with rank = m− 1 and received from the process with rank = m + 1,
as sketched in the right part of the Figure 2.13. The routine 2.3 that accomplishes this
task in the following:

C Code 2.3 Code to manage data exchange in 1-D for ghost points using blocking MPI send and receive
routines.

1 void mpi_exchange_1d (double * const buffer ,
2 const i n t n ,
3 const i n t nbrtop ,
4 const i n t nbrbottom ,
5 const i n t s t a r t ,
6 const i n t end ,
7 const MPI_Comm comm1d)
8

9 {
10 /* The funct ion i s c a l l e d by each MPI rank
11 − nbrtop i s the MPI process with rank + 1
12 − nbrbottom i s the MPI process with rank − 1 */
13

14 /* * * * * * * * * * * * * * * * F i r s t communication stage * * * * * * * * * * * * * * * * * */
15 // Perform a blocking send to the top (rank +1) process
16 MPI_Send(& b u f f e r [end] [1] , n , MPI_DOUBLE_PRECISION ,
17 nbrtop , 0 , comm1d) ;
18

19 // Perform a blocking r e c e i v e from the bottom (rank −1) process
20 MPI_Recv(& b u f f e r [s t a r t − 1] [1] , n , MPI_DOUBLE_PRECISION ,

2.4 OpenMP and MPI 57

21 nbrbottom , 0 , comm1d, MPI_STATUS_IGNORE) ;
22 /* */
23

24 /* * * * * * * * * * * * * * * Second communication stage * * * * * * * * * * * * * * * * * */
25 // Perform a blocking send to the bottom (rank −1) process
26 MPI_Send(& b u f f e r [s t a r t] [1] , n , MPI_DOUBLE_PRECISION ,
27 nbrbottom , 1 , comm1d) ;
28

29 // Perform a blocking r e c e i v e from the top (rank +1) process
30 MPI_Recv(& b u f f e r [end + 1] [1] , n , MPI_DOUBLE_PRECISION ,
31 nbrtop , 1 , comm1d, MPI_STATUS_IGNORE) ;
32 /* */
33 }

Looking at the routine, it should be noted that both processes with the first (i.e.
rank = 0) and the last rank (i.e. rank = NTasks− 1) do not have neighbor processes
on the bottom and the top, respectively. This is due to the fact that the grid of the
Poisson problem is not periodic. In the MPI implementation, this is indicated by the
value MPI_PROC_NULL. This value is a valid destination for the MPI_Send routine
and a valid source for the MPI_Recv routine. Passing such a value to one of the above
routines is identical to the code of the following form:

C Code 2.4 Snippet of code to show the behaviour of the special value MPI_PROC_NULL.

1 . . .
2 i f (dest != MPI_PROC_NULL)
3 MPI_Send (. . . , dest , . . .) ;
4
5 i f (source != MPI_PROC_NULL)
6 MPI_Recv (. . . , source , . . .) ;
7 . . .

The MPI_PROC_NULL simplifies the code that is needed for dealing with boundaries.
Although the communication pattern adopted in the mpi_exchange_1d routine is fre-

quently used in many applications, it is not the best one because the communication is
entirely sequential. The behavior of the communication pattern is shown in Figure 2.14,
considering four MPI processes. The sends do not complete until the matching receives
take place on the destination process. Since the last process with rank = 3 does not
perform the (first) send in the mpi_exchange_1d routine (i.e the destination process is
MPI_PROC_NULL), it can immediately receive data from the process with rank = 2,
thus allowing that process to complete the MPI_Send and then to receive data from
the process with rank = 1 through the MPI_Recv, and so forth.

Figure 2.14 MPI sequential communication due to sends blocking until the matching receive is posted.
The shaded area shows the idle time, while the process is waiting until the send communication is
allowed to transfer the data to the neighboring process.

It is worth understanding in more detail what happens when MPI sends a message.
Consider the following code:

58 Chapter 2. Parallel programming

C Code 2.5 Snippet of code to show the use of MPI_Send and MPI_Recv routines.

1 . . .
2 i n t e r r ;
3 i f (rank == 0)
4 e r r = MPI_Send (send_buffer , . . . , 1 , . . .) ;
5 e l s e i f (rank == 1)
6 e r r = MPI_Recv (recv_buffer , . . . , 0 , . . .) ;
7 . . .

What happens when the send_bu f f er is sent by the process zero (i.e. with rank = 0)
but process one (i.e. with rank = 1) is not ready to receive it? Three possibilities exist:

1. process zero stops and waits until the process one is ready to receive the message;
2. process zero copies the send_bu f f er to some internal buffer (managed transpar-

ently by MPI) and returns successfully from the MPI_Send call (i.e. the MPI
routine returns the value MPI_SUCCESS). For large applications that are already
using a large amount of memory, the space available for message buffering may
be quite small, so process zero has no choice but to wait for process one;

3. MPI_Send routine fails. Note that MPI does not guarantee that an MPI pro-
gram can continue past an error, however, MPI implementations will attempt to
continue whenever possible.

The programmer should be aware of the pitfalls of the MPI implementation,
keeping in mind that an MPI implementation is allowed to buffer the message to be
sent into internal storage yielding a non-blocking MPI_Send, but it is not required to
do so. Indeed, the proposed implementation of the mpi_exchange_1d routine shows a
performance problem, because the code works but it does not execute in parallel.

MPI topology with ordered send and receive
One of the easiest ways to solve the issue is to pair the sends and receives calls. That
is, if one process is sending a message to another, the destination will issue a receive
call that matches the send before doing in turn a send call, as shown in the routine 2.6.
In this routine, the even ranks send first, and the odd ranks receive first, yielding a
paired exchange.

C Code 2.6 Code to manage data exchange in 1-D for ghost points using paired MPI sends and receives.

1 void mpi_exchange_paired_1d (double * const buffer ,
2 const i n t n ,
3 const i n t nbrtop ,
4 const i n t nbrbottom ,
5 const i n t s t a r t ,
6 const i n t end ,
7 const MPI_Comm comm1d)
8

9 {
10 /* The funct ion i s c a l l e d by each MPI rank
11 − nbrtop i s the MPI process with rank + 1
12 − nbrbottom i s the MPI process with rank − 1 */
13

14 i f ((rank % 2) == 0) /* even rank */
15 {
16 /* * * * * * * * * * * * * * * * F i r s t communication stage * * * * * * * * * * * * * * * * * */
17 // Perform a blocking send to the top (rank +1) process
18 MPI_Send(& b u f f e r [end] [1] , n , MPI_DOUBLE_PRECISION ,
19 nbrtop , 0 , comm1d) ;
20

21 // Perform a blocking r e c e i v e from the bottom (rank −1) process
22 MPI_Recv(& b u f f e r [s t a r t − 1] [1] , n , MPI_DOUBLE_PRECISION ,

2.4 OpenMP and MPI 59

23 nbrbottom , 0 , comm1d, MPI_STATUS_IGNORE) ;
24 /* */
25

26 /* * * * * * * * * * * * * * * Second communication s tage * * * * * * * * * * * * * * * * * */
27 // Perform a blocking send to the bottom (rank −1) process
28 MPI_Send(& b u f f e r [s t a r t] [1] , n , MPI_DOUBLE_PRECISION ,
29 nbrbottom , 1 , comm1d) ;
30

31 // Perform a blocking r e c e i v e from the top (rank +1) process
32 MPI_Recv(& b u f f e r [end + 1] [1] , n , MPI_DOUBLE_PRECISION ,
33 nbrtop , 1 , comm1d, MPI_STATUS_IGNORE) ;
34 /* */
35 }
36 e l s e /* odd rank */
37 {
38 /* * * * * * * * * * * * * * * * F i r s t communication stage * * * * * * * * * * * * * * * * * */
39 // Perform a blocking r e c e i v e from the bottom (rank −1) process
40 MPI_Recv(& b u f f e r [s t a r t − 1] [1] , n , MPI_DOUBLE_PRECISION ,
41 nbrbottom , 0 , comm1d, MPI_STATUS_IGNORE) ;
42

43 // Perform a blocking send to the top (rank +1) process
44 MPI_Send(& b u f f e r [end] [1] , n , MPI_DOUBLE_PRECISION ,
45 nbrtop , 0 , comm1d) ;
46 /* */
47

48 /* * * * * * * * * * * * * * * Second communication s tage * * * * * * * * * * * * * * * * * */
49 // Perform a blocking r e c e i v e from the top (rank +1) process
50 MPI_Recv(& b u f f e r [end + 1] [1] , n , MPI_DOUBLE_PRECISION ,
51 nbrtop , 1 , comm1d, MPI_STATUS_IGNORE) ;
52

53 // Perform a blocking send to the bottom (rank −1) process
54 MPI_Send(& b u f f e r [s t a r t] [1] , n , MPI_DOUBLE_PRECISION ,
55 nbrbottom , 1 , comm1d) ;
56 /* */
57 }
58 }

MPI topology with combined send and receive
Pairing MPI communications is effective but can be difficult to program when the
MPI topology is complex. A productive alternative is the usage of the MPI_Sendrecv
routine, which allows both to send and receive data without deadlock. The code for
the combined send-receive is shown in the routine 2.7.

C Code 2.7 Code to manage data exchange in 1-D for ghost points using send-receive MPI routine.

1 void mpi_exchange_sendrecv_1d (double * const buffer ,
2 const i n t n ,
3 const i n t nbrtop ,
4 const i n t nbrbottom ,
5 const i n t s t a r t ,
6 const i n t end ,
7 const MPI_Comm comm1d)
8

9 {
10 /* The funct ion i s c a l l e d by each MPI rank
11 − nbrtop i s the MPI process with rank + 1
12 − nbrbottom i s the MPI process with rank − 1 */
13

14 MPI_Sendrecv (
15 &b u f f e r [end] [1] , n , MPI_DOUBLE_PRECISION , nbrtop , 0 ,

60 Chapter 2. Parallel programming

16 &b u f f e r [s t a r t − 1] [1] , n , MPI_DOUBLE_PRECISION , nbrbottom , 0 ,
17 comm1d, MPI_STATUS_IGNORE
18) ;
19

20 MPI_Sendrecv (
21 &b u f f e r [s t a r t] [1] , n , MPI_DOUBLE_PRECISION , nbrbottom , 1 ,
22 &b u f f e r [end + 1] [1] , n , MPI_DOUBLE_PRECISION , nbrtop , 1 ,
23 comm1d, MPI_STATUS_IGNORE
24) ;
25 }

MPI also allows the programmer to provide a buffer into which the message can be
placed until it is delivered through the MPI_Buffer_attach routine. Then it is enough
to replace the MPI_Send call with MPI_Bsend.

MPI topology with nonblocking communications

The programmer should always keep in mind that moving data from one process
to another takes more time (and usually required more energy) than processing
data within a single process (core). This mismatch reflects the underlying hardware
capability and should be one of the main concerns when the programmer designs a
parallel application that relies on a message-passing approach.

The nonblocking send and receive operations are issued by the MPI_Isend and
MPI_Irecv routines. The arguments of such routines are the same as for MPI_Send
and MPI_Recv with the addition of a handle as the last argument (in C language).
The general rule is that the buffer containing the message issued through the call of
MPI_Isend has not to be modified until the message has been received. MPI allows
checking for the delivery of the message using the MPI_Wait or MPI_Test routines, or
it provides a way to wait for all the nonblocking operations through the MPI_Waitall
routine. The code using nonblocking communications is shown in the routine 2.8.

C Code 2.8 Code to manage data exchange in 1-D for ghost points using nonblocking MPI routine.

1 void mpi_exchange_nonblocking_1d (double * const buffer ,
2 const i n t n ,
3 const i n t nbrtop ,
4 const i n t nbrbottom ,
5 const i n t s t a r t ,
6 const i n t end ,
7 const MPI_Comm comm1d)
8

9 {
10 /* The funct ion i s c a l l e d by each MPI rank
11 − nbrtop i s the MPI process with rank + 1
12 − nbrbottom i s the MPI process with rank − 1 */
13

14 // communication request (handle)
15 MPI_Request request [4] ;
16

17 /* * * * * * * * * * * * * * Process i s ready to r e c e i v e data * * * * * * * * * * * * * * * */
18 // Perform a nonblocking r e c e i v e from the bottom (rank −1) process
19 MPI_Irecv(& b u f f e r [s t a r t − 1] [1] , n , MPI_DOUBLE_PRECISION ,
20 nbrbottom , 0 , comm1d, &request [0]) ;
21

22 // Perform a nonblocking r e c e i v e from the top (rank +1) process
23 MPI_Irecv(& b u f f e r [end + 1] [1] , n , MPI_DOUBLE_PRECISION ,
24 nbrtop , 1 , comm1d, &request [1]) ;
25 /* */
26

2.4 OpenMP and MPI 61

27 /* * * * * * * * * * * * * * Process begins to send data */
28 // Perform a nonblocking send to the top (rank +1) process
29 MPI_Isend(& b u f f e r [end] [1] , n , MPI_DOUBLE_PRECISION ,
30 nbrtop , 0 , comm1d, &request [2]) ;
31

32 // Perform a nonblocking send to the bottom (rank −1) process
33 MPI_Isend(& b u f f e r [s t a r t] [1] , n , MPI_DOUBLE_PRECISION ,
34 nbrbottom , 1 , comm1d, &request [3]) ;
35 /* */
36

37 /* some usefu l work (computation) could be performed (while the
38 b u f f e r conta in ing the message has not to be modified) */
39

40 /* * * * * * * * * * * Waits f o r a l l given MPI Requests to complete * * * * * * */
41 MPI_Waitall (4 , request , MPI_STATUSES_IGNORE) ;
42 }

In principle, this routine can be twice as fast as the version 2.6. Note that the
main purpose of using nonblocking MPI routines is to overlap communication and
computation in programs. This means that after MPI_Isend and MPI_Irecv have
been issued some useful work (computation) could be performed (while the buffer
containing the message has not to be modified) before the MPI_Wait or MPI_Waitall
routine is called. The latest routine guarantees that the process waits for all given MPI
requests to complete (in our case MPI_Isend and MPI_Irecv calls).

Jacobi with 2-D decomposition

Until now we show how to numerically tackle the Poisson problem with 1-D decom-
position, where the physical domain is sliced into slabs along the vertical direction.
Another important virtual topology is the Cartesian topology, which is simply a decom-
position in the natural coordinate (e.g. x,y) directions. MPI provides a collection of
routines for defining and managing the Cartesian topology.

C Code 2.9 MPI Cartesian topology.

1 . . .
2 // communicator s i z e
3 # d e f i n e SIZE 2
4 // X d i r e c t i o n
5 # d e f i n e X 0
6 // Y d i r e c t i o n
7 # d e f i n e Y 1
8

9 i n t ThisTask , NTasks ;
10 MPI_Comm comm2d ;
11

12 s t a t i c i n t dims [SIZE] = { 2 , 3 } ;
13 s t a t i c i n t periods [SIZE] = { 0 , 0 } ;
14 s t a t i c i n t reorder = 0 ;
15

16 // i n i t i a l i z e the MPI execut ion environment
17 MPI_Init (NULL, NULL) ;
18

19 // determines the s i z e of the group a s s o c i a t e d with a communicator
20 MPI_Comm_size (MPI_COMM_WORLD, &NTasks) ;
21

22 // determines the rank of the c a l l i n g process in the communicator
23 MPI_Comm_rank(MPI_COMM_WORLD, &ThisTask) ;
24

25 /* makes a new communicator to which

62 Chapter 2. Parallel programming

26 topology information has been at tached */
27 MPI_Cart_create (MPI_COMM_WORLD, SIZE , dims , periods , reorder , &comm2d) ;
28 . . .
29 i n t coords [SIZE] ;
30 /* determines process coords in
31 c a r t e s i a n topology given rank in group */
32 MPI_Cart_coords (comm2d, ThisTask , SIZE , coords) ;
33 . . .
34 i n t rank_source , rank_dest ;
35 /* re turns the s h i f t e d source and d e s t i n a t i o n ranks ,
36 given a s h i f t d i r e c t i o n and amount */
37 MPI_Cart_shif t (comm2d, X , 1 , &rank_source , &rank_dest) ;
38 . . .

The routine 2.9 though MPI_Cart_create creates a new communicator in the sixth
argument (comm2d) from the (old) communicator specified in the first argument
(MPI_COMM_WORLD). The features of the Cartesian topology are assigned by the
second through the fifth argument. The dims argument specifies the x and y dimensions
of the Cartesian mesh. The 1-D decomposition topology discussed in Section 2.4.2 can
also be configured using the MPI Cartesian routine setting up to one the dimension
along the y axis. The periods argument indicates whether the mesh is periodic or not
in each dimension. Setting the logical value reorder to TRUE allows MPI to reorder
the rank of the processes figuring out the neighbors in the actual hardware for better
performance. At runtime, it is possible to retrieve full Cartesian topology information
associated with a communicator using the MPI_Cart_get routine. This routine returns
i) the number of processes for each cartesian dimension, ii) the periodicity (true/false)
for each cartesian dimension, and iii) the coordinates of the calling process in the
cartesian structure. Coordinates in Cartesian topology can also be retrieved using the
MPI_Cart_coords routine, which takes as input the rank of the MPI process.

Figure 2.15 A 2-D Cartesian domain decomposition using six MPI processes, also showing a shift by one
in the first dimension. This domain decomposition is obtained through the code 2.9.

Figure 2.15 shows the obtained 2-D Cartesian decomposition using the routine 2.9.
Following the previous arguments in order to solve the Poisson problem, each MPI
process needs to send and receive data from its neighbors, as illustrated in Figure 2.13
(using the 2-D decomposition each process needs to communicate not only with top
and bottom processes but also with left and right processes). The MPI_Cart_shift
routine, as shown in the code 2.9, allows us to figure out the neighboring processes, i.e.
it returns the shifted source and destination ranks, given a shift direction and amount.
For example, the process with rank = 1 at Cartesian coordinates (0,1) in Figure 2.15,
along the X (vertical) direction, has rank_source = MPI_PROC_NULL (because the

2.4 OpenMP and MPI 63

domain is not periodic) and rank_dest = 4.
Using the 2-D Cartesian domain decomposition the MPI communication pattern

implemented in the routine 2.8 is no longer valid because now we need to figure out
right and left neighbors as well as the top and bottom neighbors, as shown by the
following routine:

C Code 2.10 Left, right, top and bottom neighbors in 2-D cartesian domain decomposition.

1 . . .
2 /* comm2d i s the 2−D Cartes ian communicator previously crea ted
3 get l e f t and r i g h t neighbors (Y d i r e c t i o n) */
4 i n t nbrr ight , n b r l e f t ;
5 MPI_Cart_shif t (comm2d, Y , 1 , &n b r l e f t , &nbrr ight) ;
6

7 // get bottom and top neighbors (X d i r e c t i o n)
8 i n t nbrtop , nbrbottom ;
9 MPI_Cart_shif t (comm2d, X , 1 , &nbrbottom , &nbrtop) ;

10 . . .

We change the body of the core algorithm of the Jacobi iteration accordingly:

C Code 2.11 Core algorithm of the Jacobi iteration in 2-D Cartesian domain decomposition.

1 . . .
2 /* Using 2−D Cartes ian domain decomposition each MPI rank handles
3 the subdomain with the fol lowing ranges :
4 − [x _ s t a r t −1 , x_end +1] (x_ i points , inc luding ghost points) .
5 − [y _ s t a r t −1 , y_end +1] (y_i points , inc luding ghost points) ; */
6

7 // New ranges f o r the core c a l c u l a t i o n
8

9 f o r (i n t i = x _ s t a r t ; i <=x_end ; i ++)
10 f o r (i n t j = y _ s t a r t ; j <=y_end ; j ++)
11 unew[i , j] = 0 . 2 5 * (u [i − 1] [j] + u [i] [j +1] + u [i] [j −1]
12 + u [i +1] [j] − h * h * f [i] [j]) ;
13 . . .

The last routine that we need to design is the 2-D version of the data exchange
routine 2.8. Data communication with top and bottom neighbors remains the same,
while is a little more difficult when it involves the left and right processes because the
data is not stored contiguously in memory.

In the data exchange routines seen so far, buffers are contiguous areas in memory,
so that, for example, the datatypes MPI_DOUBLE_PRECISION coupled with the count
of occurrences are sufficient to describe the buffer to be sent. MPI derived datatypes
allow the programmer to specify non-contiguous areas in memory, such as a column of
an array stored in a row-major order like in C programming language. The mechanism
provided by MPI for describing a new kind of datatype, interesting for our purpose, is
the following:

C Code 2.12 MPI derived datatype routine.

1 . . .
2 /* Creates a vec tor (s t r i d e d) datatype :
3 − 1 s t argument (count) : number of blocks ;
4 − 2nd argument (b locklength) : number of elements in each block
5 − 3rd argument (s t r i d e) : number of elements between the
6 s t a r t of each block
7 − 4 th argument (oldtype) : old datatype
8 − 5 th argument (newtype) : new datatype
9

64 Chapter 2. Parallel programming

10 count = (x_end − x _ s t a r t + 1) , i . e . the s i z e of each column
11 blocklength = 1 , i . e . one double (old datatype) in each block
12 s t r i d e = (y_end − y _ s t a r t + 3) , i . e . ghost points are discarded
13 oldtype = MPI_DOUBLE_PRECISION */
14

15 MPI_Datatype column ;
16 MPI_Type_vector ((x_end − x _ s t a r t + 1) , 1 , (y_end − y _ s t a r t + 3) ,
17 MPI_DOUBLE_PRECISION , &column) ;
18

19 // commits the datatype
20 MPI_Type_commit (column) ;
21 . . .
22 /* when the datatype i s no longer needed , i t should be freed ,
23 i . e . datatype i s s e t to MPI_TYPE_NULL */
24 MPI_Type_free (column) ;

Finally, we have all the necessities to implement the two-dimensional exchange
routine required when the 2-D Cartesian domain decomposition is used.

C Code 2.13 Code to manage the exchange in 2-D Cartesian domain for ghost points using send-receive
MPI routine .

1 void mpi_exchange_sendrecv_2d (double * const buffer ,
2 const i n t nbrtop ,
3 const i n t nbrbottom ,
4 const i n t n b r l e f t ,
5 const i n t nbrr ight
6 const i n t x _ s t a r t ,
7 const i n t x_end ,
8 const i n t y _ s t a r t ,
9 const i n t y_end ,

10 const MPI_Comm comm2d,
11 const MPI_Datatype column)
12

13 {
14 const i n t data_row_size = (y_end − y _ s t a r t + 1) ;
15 MPI_Sendrecv(& b u f f e r [x_end] [y _ s t a r t] , data_row_size ,
16 MPI_DOUBLE_PRECISION , nbrtop , 0 ,
17 &b u f f e r [x _ s t a r t −1] [y _ s t a r t] , data_row_size ,
18 MPI_DOUBLE_PRECISION , nbrbottom , 0 ,
19 comm2d, MPI_STATUS_IGNORE) ;
20

21 MPI_Sendrecv(& b u f f e r [x _ s t a r t] [y _ s t a r t] , data_row_size ,
22 MPI_DOUBLE_PRECISION , nbrbottom , 1 ,
23 &b u f f e r [x_end +1] [y _ s t a r t] , dat_row_size ,
24 MPI_DOUBLE_PRECISION , nbrtop , 1 ,
25 comm2d, MPI_STATUS_IGNORE) ;
26

27 MPI_Sendrecv(& b u f f e r [x _ s t a r t] [y_end] , 1 , column , nbrr ight , 0 ,
28 &b u f f e r [x _ s t a r t] [y _ s t a r t −1] , 1 , column , n b r l e f t , 0 ,
29 comm2d, MPI_STATUS_IGNORE) ;
30

31 MPI_Sendrecv(& b u f f e r [x _ s t a r t] [y _ s t a r t] , 1 , column , n b r l e f t , 1 ,
32 &b u f f e r [x _ s t a r t] [y_end +1] , 1 , column , nbrr ight , 1 ,
33 comm2d, MPI_STATUS_IGNORE) ;
34 }

Computation and communication overlapping
In real applications programmers figure out an effective technique for masking data
transfer latency, with the potential for considerable performance gains, enabling
applications to scale well on a large number of processing units. So far, we design

2.4 OpenMP and MPI 65

the communication pattern using nonblocking routines in order to avoid deadlock in
the communications, but we do not discuss how to arrange the program so that some
useful work can be done while processes are performing communications.

Looking at the code 2.1, in the core algorithm of the Jacobi iteration the values
of the buffer unew at points of the mesh that are interior to the domain (i.e. values
(x_start + 1)≤ xi ≤ (x_end− 1), and (y_start + 1)≤ yi ≤ (y_end− 1)) on each process
can be computed without data exchange with the other processes. We call these values
local data.

Hence, the computation and communication can be arranged in such a way:
(I) begin nonblocking sending/receiving data to/from the other processes;

(II) perform the computation with the local data;
(III) check if data have been received from the other processes and finish computing

with them.
The snippet of code, assuming the 2-D Cartesian domain decomposition, for the task
(I) is the following:

C Code 2.14 Snippet of code to begin nonblocking send/recv to/from the other processes.

1 . . .
2 /* 2−D Cartes ian domain decomposition i s assumed
3 4 nonblocking MPI_Irecv + 4 nonblocking MPI_Isend */
4 MPI_Request request [8] ;
5

6 MPI_Irecv (. . . , nbrbottom , 0 , comm2d, &request [0]) ;
7 MPI_Irecv (. . . , nbrtop , 1 , comm2d, &request [1]) ;
8 MPI_Irecv (. . . , n b r l e f t , 2 , comm2d, &request [2]) ;
9 MPI_Irecv (. . . , nbrr ight , 3 , comm2d, &request [3]) ;

10

11 MPI_Isend (. . . , nbrtop , 0 , comm2d, &request [4]) ;
12 MPI_Isend (. . . , nbrbottom , 1 , comm2d, &request [5]) ;
13 MPI_Isend (. . . , nbrr ight , 2 , comm2d, &request [6]) ;
14 MPI_Isend (. . . , n b r l e f t , 3 , comm2d, &request [7]) ;
15 . . .

The computation routine for the task (II) is the following:

C Code 2.15 Core algorithm of the Jacobi iteration assuming the 2-D Cartesian domain decomposition on
local data.

1 f o r (i n t i = x _ s t a r t +1 ; i <x_end ; i ++)
2 f o r (i n t j = y _ s t a r t +1 ; j <y_end ; j ++)
3 unew[i , j] = 0 . 2 5 * (u [i − 1] [j] + u [i] [j +1] + u [i] [j −1]
4 + u [i +1] [j] − h * h * f [i] [j]) ;

Finally, the snippet of code for the task (III) is the following:

C Code 2.16 Snippet of code to finalize the calculation on points of the grid that require ghost points.

1 . . .
2 i n t idx ;
3 MPI_Status s t a t u s ;
4

5 f o r (i n t req=0 ; req <8 ; req ++)
6 {
7 /* waits f o r any s p e c i f i e d MPI Request to complete */
8 MPI_Waitany (8 , request , &idx , &s t a t u s) ;
9

10 switch (s t a t u s . MPI_TAG)
11 {
12 /* commuication with tag 0 completed */
13 case 0 :

66 Chapter 2. Parallel programming

14 f o r (i n t j = y _ s t a r t ; j <=y_end ; j ++)
15 unew[x _ s t a r t] [j] = . . .
16 break ;
17

18 /* communication with tag 1 completed */
19 case 1 :
20 f o r (i n t j = y _ s t a r t ; j <=y_end ; j ++)
21 unew[x_end] [j] = . . .
22 break ;
23

24 /* communication with tag 2 completed */
25 case 2 :
26 f o r (i n t i = x _ s t a r t ; i <=x_end ; i ++)
27 unew[i] [y _ s t a r t] = . . .
28 break ;
29

30 /* communication with tag 3 completed */
31 case 3 :
32 f o r (i n t i = x _ s t a r t ; i <=x_end ; i ++)
33 unew[i] [y_end] = . . .
34 break ;
35 }
36 }
37 . . .

2.4.3 OpenMP implementation
The Jacobi algorithm with a serial code has:

◦ time complexity of the order O(I · N2), where I is the number of iterations
to achieve convergence (usually the iteration is terminated when the difference
between two successive approximations to the solution is less than ∼ 10−5) and N
is the grid size (i.e. nested loops of the core algorithm of the Jacobi iteration 2.1);

◦ memory complexity of the order O(N2).

Consequently, we expect:

◦ long times to process matrix of big size and/or great amount of iterations (cache
misses rate severely impacts performance when the matrix size exceeds cache
size);

◦ size of the matrix is limited by the platform (i.e. size of the memory available on
the node). On modern platforms, this may be a minor issue.

We remind that the main loop of the Jacobi iterator takes the form:

C Code 2.17 The main loop of the Jacobi iteration.

1 # d e f i n e MAX_COUNT 10000
2 # d e f i n e TOLERANCE 1 . 0 e−5
3

4 i n t iCount = 1 ;
5 double e r r = 1 . 0 ;
6 while ((iCount < MAX_COUNT) && (e r r > TOLERANCE))
7 {
8 f o r (i n t i =0 ; i <Dimension ; i ++)
9 f o r (i n t j =0 ; j <Dimension ; j ++)

10 { . . . }
11

12 iCount ++;

2.4 OpenMP and MPI 67

13 e r r = DIFF (. . .) ;
14 }

The while loop cannot be parallelized using explicitly the #pragma omp parallel for
directive, because the iterations of the while loop are not specified. However, the inner
loops can be easily parallelized, as shown in the following code:

C Code 2.18 The first inner loop of the Jacobi iteration parallelized using OpenMP.

1 while ((iCount < MAX_COUNT) && (e r r > TOLERANCE))
2 {
3 #pragma omp p a r a l l e l d e f a u l t (none) p r i v a t e (i , j)
4 shrared (Dimensions , { . . . })
5 num_threads (NThreads)
6 {
7 #pragma omp f o r schedule (s t a t i c)
8 f o r (i n t i =0 ; i <Dimension ; i ++)
9 f o r (i n t j =0 ; j <Dimension ; j ++)

10 { . . . }
11 } /* omp p a r a l l e l region */
12

13 iCount ++;
14 e r r = DIFF (. . .) ;
15 } /* while loop */

Using the clause schedule(static) on the omp for directive, the loop over the i index is
parallelized across the threads with chunk size equal to Dimension/NThredas, where
NThreads is the number of OpenMP threads working within the parallel region, speci-
fied through the clause num_threads(integer-expression). With most OpenMP runtimes,
the default scheduling when no schedule clause is specified is static. However, to
provide the maximum application flexibility (i.e. do not modify the source code of the
application), it is possible to set the maximum number of threads to use for OpenMP
parallel regions using the OMP_NUM_THREADS environment variable, and to set
the run-time schedule type and optional chunk size through the OMP_SCHEDULE
environment variable, while static and num_threads clauses are not specified in the
source code.

Looking carefully at the loops in the source code 2.18, we figure out that the loops
are (i) perfectly nested, i.e. there is no intervening code between the loops, (ii) they
form a rectangular iteration space and the bounds of each loop are invariant over all
the loops, (iii) the instructions of the innermost associated loop do not contain any break
statement nor continue statement. This means that the two loops can be parallelized in
a nest without introducing nested parallelism. The latest task is accomplished through
the omp collapse clause, as shown in the following snippet of code:

C Code 2.19 Usage of the collapse clause on the omp for loop to parallelize multiple loops in a nest.

1 . . .
2 {
3 #pragma omp f o r c o l l a p s e (2) schedule (s t a t i c)
4 f o r (i n t i =0 ; i <Dimension ; i ++)
5 f o r (i n t j =0 ; j <Dimension ; j ++)
6 { . . . }
7 } /* omp p a r a l l e l region */

The resulting collapsed loop is parallelized across the threads with chunk size equal to
Dimension2/NThreads.

We point out that, using this approach, the parallel section is created and destroyed
(fork-join model) for every iteration. The master thread runs from start to finish the

68 Chapter 2. Parallel programming

program. When the parallel region is encountered, additional threads are created by
the runtime system. The master thread is included in the group of active threads
within the parallel region. At the termination of the parallel region, all the threads
are synchronized, and the execution continues only after the last thread has arrived
at the implicit barrier. After the parallel region exits, the master thread continues
updating the value of the counter iCount, evaluating the error err and the logical value
of the while loop. This approach might lead to a performance penalty because the
threads are forked and joined in each iteration of the while loop. However, "smart"
OpenMP implementations do not join threads after a parallel region is completed;
instead, threads might busy-wait for some time, and then sleep until another parallel
region is started. This is done exactly to prevent high overheads at the start and the
end of parallel regions within a loop, so the impact on the execution time might be
negligible. The OMP_WAIT_POLICY environment variable provides hints about the
preferred behavior of waiting threads during program execution. Use ACTIVE if you
want waiting threads to mostly be active. That is, the threads consume processor cycles
while waiting. This wait policy is recommended for maximum performance on the
dedicated machine.

With the introduction of the cancellation constructs in OpenMP 4.0, an elegant way
to terminate the execution of a parallel construct is available. This feature is useful for
specific parallel methods with dynamic behavior, such as, for instance, the while work-
sharing loop. The cancel and cancellation point constructs in C/C++ are stand-alone
directives, which trigger an action when, or if, is encountered at runtime by any thread
in its execution path.

An elegant and more sophisticated way to support unstructured parallelism, such
as unbound loops and recursive functions, is offered by the tasking execution model
(not covered here), first introduced in OpenMP 3.0, and refined in later versions.

2.5 GPU computing 69

2.5 GPU computing

University of Rijeka

In this section we will focus on CUDA (Compute Unified Device Architecture),
a computing platform that facilitates programming on graphics cards produced by
Nvidia and OpenACC, a programming standard for accelerators.

2.5.1 CUDA

The term CUDA refers both to software and underlying hardware architecture. As
a programming language, CUDA is a high-level C/C++ like language intended for
heterogeneous programming. It is actively developed, includes many "extensions" and
can be accessed/modified from other languages e.g. python (pyCuda). On a hardware
level, CUDA-enabled GPUs are massively parallelized computer architectures with
shared memory i.e. SIMD machines.

A CUDA program uses kernels which execute certain operations/instructions on
the data stream. The kernel is a C++ function callable from the host computer and
executed n times in parallel on the CUDA device by n different CUDA threads. A
typical example of a data stream is a vector containing n floats.

Figure 2.16 CUDA hierarchy.

Memory and threads inside a GPU follow an organizational hierarchy as seen in
figure 2.16. Processing elements (threads) are organized as follows:

1. thread.
2. block composed of several concurrently executing threads.
3. grid composed of several concurrently executing thread blocks.

70 Chapter 2. Parallel programming

whereas memory organization coincides with the organization of processing elements:
1. per-thread local memory visible to a thread.
2. per-block shared memory visible to all threads in a block.
3. per-device global memory.

Every thread in a device has its own registers and off-chip local memory. All threads in
a block can further access a shared memory private to that block and global, per-device
memory. This means that, aside from thread-specific memory, there are several levels
of shared memory each innate to an organizational category i.e. grids and blocks. The
main advantages of CUDA are:

◦ massive acceleration for parallelizable problems.

◦ rapidly expanding third-party libraries for machine learning, linear algebra, etc.

The main disadvantages include:

◦ runs only on Nvidia GPUs.

◦ high initial cost.

◦ can be complex to program and requires knowledge of architecture for best
efficiency.

◦ communication overhead between CPU and GPU.

◦ small community.

CUDA program
We will analyse CUDA imoplementation on a simple vector addition program which
evaluates:

a + b = c (2.21)

First, we need to define the number of elements in an array (vector).

CUDA Code 2.1 Defining a vector.

1 i n t n = 100000 ;

Next, arrays on the host (CPU) and device (GPU) need to be defined. Prefix d is used
to distinguish the device arrays.

CUDA Code 2.2 Defining arrays on the CPU and GPU.

1 double * a ;
2 double * b ;
3 double * c ;
4

5 double * d_a ;
6 double * d_b ;
7 double * d_c ;

Since all arrays are double precision, memory required for an array with n elements
equals:

CUDA Code 2.3 Calculating memory requirements.

1 s i z e _ t bytes = n* s i z e o f (double) ;

Now we need to allocate the memory on the host (CPU) and device (GPU) for arrays a,
b, c and d_a, d_b, d_c. malloc allocates the requested memory on the host and returns
a pointer. cudaMalloc allocates the requested memory on the device and returns a
pointer. Note the differences in syntax.

2.5 GPU computing 71

CUDA Code 2.4 Allocating memory on the CPU and GPU.

1 a = (double *) malloc (bytes) ;
2 b = (double *) malloc (bytes) ;
3 c = (double *) malloc (bytes) ;
4

5 cudaMalloc(&d_a , bytes) ;
6 cudaMalloc(&d_b , bytes) ;
7 cudaMalloc(&d_c , bytes) ;

Let’s fill arrays a and b with some values. We must iterate through the elements:

CUDA Code 2.5 Generating data.

1 f o r (i = 0 ; i < n ; i ++) {
2 a [i] = 1 . 0 ;
3 b [i] = 4 . 0 ;
4 }

The next logical step is the transfer of data from the host to the device. This is achieved
with cudaMemcpy function which takes destination and source arrays, data type and
type of transfer:

CUDA Code 2.6 Data transfer from the host to the device.

1 cudaMemcpy (d_a , a , bytes , cudaMemcpyHostToDevice) ;
2 cudaMemcpy (d_b , b , bytes , cudaMemcpyHostToDevice) ;

Now we must set the execution configuration parameters. Threads that can execute
an instruction are grouped in blocks of a given size. Each thread has a unique index
which has to be defined. Blocks can contain up to 1024 threads, but this number may
vary depending on the GPU architecture and CUDA version. Threads in a block share
memory. Let’s assume we have 256 threads in a block:

CUDA Code 2.7 Number of threads per block.

1 i n t thr_per_blk = 2 5 6 ;

Multiple blocks are grouped in a grid. Each block in a grid must have the same
number of threads. Block are independent i.e. no communication is possible between
them hence this must be accounted for when programming. Grids can be one or
two-dimensional. Based on a set number of elements in an array and the number of
threads in a block, we can calculate the number of blocks we need to complete the
calculation:

CUDA Code 2.8 Calculating the required number of blocks.

1 i n t blk_ in_gr id = c e i l (f l o a t (n) / thr_per_blk) ;

The kernel function is launched with:

CUDA Code 2.9 Launching the CUDA kernel.

1 vAdd<<< blk_in_gr id , thr_per_blk >>>(d_a , d_b , d_c , n) ;

We will return to the kernel and its definition later.
Results of the computation are stored in array d_c on the GPU. This data must be

copied back to the host array c. We will use the same cudaMemcpy function, albeit with
different source/destination and transfer type:

CUDA Code 2.10 Data transfer from the device to the host.

1 cudaMemcpy (c , d_c , bytes , cudaMemcpyDeviceToHost) ;

72 Chapter 2. Parallel programming

Let’s verify the results. We will sum all the values in c and divide them with the
number of elements. The result should be 5.0:

CUDA Code 2.11 Results validation.

1 double sum = 0 ;
2 f o r (i = 0 ; i < n ; i ++)
3 sum += d_c [i] ;
4 p r i n t f (" Resul t : %f \n " , sum/n) ;

Finally, we can free the memory on the device and host. To achieve this we will use
cudaFree and free commands:

CUDA Code 2.12 Memory release.

1 cudaFree (d_a) ;
2 cudaFree (d_b) ;
3 cudaFree (d_c) ;
4

5 f r e e (a) ;
6 f r e e (b) ;
7 f r e e (c) ;

Let’s focus on the kernel. CUDA kernel is a "global" function, meaning it is called
from the host (CPU) and executed on the device (GPU). It includes the id variable
which assigns a unique thread ID to all threads in the grid. The ID of a thread is
calculated according to:

CUDA Code 2.13 Defining the thread IDs.

1 i n t id = blockDim . x * blockIdx . x + threadIdx . x ;

We have previously mentioned that our blocks have 256 threads i.e. blockDim.x = 256.
As we iterate through blocks, the ID of a given block will assume values of 0,1...N.
Consequently, the ID of a "first" thread in a block will be 0,256,512...n. Each thread
must calculate the sum:

CUDA Code 2.14 Thread iterator.

1 i f (id < n)
2 c [id] = a [id] + b [id] ;

If statement ensures that operations are executed only on elements for which we have
allocated the memory. This is necessary since we could have reserved more threads
than are needed but haven’t assigned data/allocated memory.

CUDA programs must first be compiled. On HPC Bura, the CUDA environment is
loaded with:

CUDA Code 2.15 Setting up the evironment using modules.

1 module load nvidia −CUDA/10.2

To build a binary (executable) one must run the following command, assuming that
the code is stored in vectorAdd.cu:

CUDA Code 2.16 Compilation.

1 nvcc vectorAdd . cu −o vectorAddBinary

The reated binary is executed with:

CUDA Code 2.17 Code execution

1 ./ vectorAddBinary

Part II

Executing programs and code in
HPC environment

Introduction
SLURM
PBS
Alternative solutions

1. Workload managers

76 Chapter 1. Workload managers

1.1 Introduction

University of Rijeka

HPC systems are comprised of multiple computational nodes which form a cohesive
unit. Users accessing HPC systems typically access these computational resources
through a login node where resources needed for tasks that are to be executed are
reserved / requested and subsequently assigned by a workload manager. In other
terms, users can not access the computational segment of an HPC system and interact
mainly with a specific piece of software that is designed to manage such a system.

Workload managers, resource managers and job schedulers are control systems
that track and manage the use of computational resources in an HPC system. Amongst
others, they:

◦ manage resource distribution

◦ manage job queueing

◦ assign priorities

◦ allow job control

◦ provide insight into historical resource use / allocation.

Common workload managers in HPC systems nowadays are:

◦ SLURM

◦ PBS

◦ LSF.

In this chapter, we will briefly cover more prominent open-source workload managers.

1.2 SLURM 77

1.2 SLURM

University of Rijeka

Simple Linux Utility for Resource Management or SLURM [SchedMD, 2021] is one
of the most widespread workload managers on HPC systems. Its adoption can be
attributed to its overall simplicity and open-source nature. Although it might not be as
comprehensive of a solution as its competitors, nor is it a meta-batch system, SLURM
integrates several useful tools and can be extended with custom plugins.

SLURM utilizes a central slurmctld daemon running on a management node with
distributed slurmd daemons running on compute nodes. slurmctld conducts manage-
ment tasks whereas slurmd is responsible for the task / job execution. These daemons
are mandatory and enable fault-tolerant communication. Additionally, slurmdbd
daemon can be optionally employed to monitor and log the accounting information
[SchedMD, 2021]. The hierarhical structure and main components of SLURM are
shown in Figure 1.1.

Figure 1.1 SLURM components [SchedMD, 2021].

slurmctld (the controller) is tasked with monitoring each node through commu-
nication with slurmd. Nodes are assessed (their configuration and availability) and
grouped into partitions based on a predefined configuration file. Once a user request
is made, slurmctld based on the current queue and job priority acts as a job manager
and assigns the task to specific nodes via appropriate slurmd, waits for completion
and subsequently launches cleanup [SchedMD, 2021].

slurmd (remote shell) runs as root on each computational node and reports to the
controller its status. Depending on instructions, it can execute, manage or cleanup a
job. Additionally, it handles outputs and errors and can propagate received signals

78 Chapter 1. Workload managers

[SchedMD, 2021].

Figure 1.2 SLURM subsystems [SchedMD, 2021].

slurmdbd is an optional database daemon that can be used to collect and assign
specific configuration data i.e. limits, fair-share rules, etc.

SLURM employs several commands which can be used for both management
and job submission. Furthermore, job submission (execution) can be accomplished
through a bash script by specifying instructions for SLURM. These instructions are
differentiated from the standard code in the script through the use of keywords.
Script syntax will be addressed in one of the upcoming chapters. Essential SLURM
commands include:

◦ scontrol - administrator management tool

◦ sacctmgr - database management tool

◦ squeue - report job status

◦ sinfo - report system status

◦ sacct - report accounting information for a job

◦ srun - create allocation (optional) and launch a job step

◦ sbatch - submit a script for later execution (batch mode)

◦ salloc - create allocation and start a shell (interactive mode)

◦ scancel - terminate a job.

More information on commands, syntax and use will be given in the subsequent
chapter.

1.3 PBS 79

1.3 PBS

University of Rijeka

Portable Batch System or PBS at its core performs job scheduling. Since its creation,
however, it has been heavily modified and can now be extended with different plugins
thus providing a comprehensive workload management system. PBS has been forked
into several variants:

◦ Altair PBS Professional - commercial variant maintained by Altair

◦ OpenPBS - open-source variant

◦ TORQUE - non open-source fork of OpenPBS.

OpenPBS [OpenPBS, 2020] variant integrated into the OpenHPC stack is considered in
this section.

The central element of the PBS system is the server host which loads the server,
scheduler and communication daemons. Each computational node (execution host)
runs a MoM daemon which is responsible for job management on the computational
node. All MoM daemons are managed by the server host. Noted components form
the PBS complex shown in Figure 1.3.

Figure 1.3 PBS complex [OpenPBS, 2020].

server acts as the central communication hub. It handles PBS commands and
submits / queues jobs on the execution hosts (computational nodes).

scheduler is tasked with validating job resource requests. Job priority is assigned
based on defined rules.

MoM (Machine-oriented Mini-server) manages jobs assigned to a specific compu-
tational node. This typically includes session duplication, file staging, execution and
output return / cleanup. Additionally, it enables job monitoring.

Frequently used PBS commands include:

◦ qsub - submit a job

◦ qdel - terminate a job

◦ qstat - report job / queue status

◦ pbsnodes - node status.

Jobs on PBS systems are typically started via PBS scripts which contain all the
necessary information for resource allocation / job execution. All lines beginning
with #PBS are recognized as PBS directives. The syntax is similar to SLURM. More
information can be found at OpenPBS [2020].

80 Chapter 1. Workload managers

1.4 Alternative solutions

University of Rijeka

1.4.1 LSF
IBM Platform LSF (Load Sharing Facility) is a workload management tool designed
for heterogeneous distributed systems, including HPC’s [IBM, 2022]. It is extremely
versatile and can be used on clients and compute nodes / machines that do not use
Unix-like operating systems. Additionally, LSF provides a simple and comprehensive
UI.

Figure 1.4 IBM Platform LSF components.

LSF relies on daemons to manage jobs. A specific node in the system is designed as
the master host. The master host runs several daemons. Master batch daemon mbatchd
is the central daemon tasked with receiving queries / commands and managing jobs.
mbschd is the scheduler daemon. It assigns resources / priority based on defined
policies and passes this information to mbatchd. sbatchd is tasked with managing
jobs based on requests from mbatchd. sbatchd daemon runs on all nodes. Remote
execution server res receives execution requests. Master lim and lim daemon processes
run on the master host and compute nodes and are tasked with the collection and
delivery of usage / load / configuration information for each node, which is necessary
for the scheduler to adequately distribute jobs. Additionally, lim starts pim daemons
which monitor each running job.

1.4.2 MOAB / TORQUE
TORQUE (Terascale Open-source Resource and Queue Manager) is a fork of the
OpenPBS managed by the Adaptive Computing [Adaptive Computing, 2021b]. The
underlying architecture is similar to the one presented in Figure 1.3, with additional
improvements in specific areas. It features an inbuilt scheduler hence it can be classified
as a standalone workload manager, however, it is typically employed as a resource
manager which is paired with another scheduler. TORQUE is a component of the
MOAB workload manager [Adaptive Computing, 2021a].

Introduction
Commands
Scripts
Examples

2. Using the SLURM workload manager

82 Chapter 2. Using the SLURM workload manager

2.1 Introduction

University of Rijeka

Workload managers, specifically SLURM, will be assessed on an operational HPC
system. Commands and syntax as well as scripts and examples will be presented and
explained in this chapter.

All segments of an HPC will be explored in order to better familiarize users with
a heterogenous HPC system. Examples and test cases introduced in this and the
following chapters have been tested / executed on HPC Bura.

HPC Bura can be accessed through two secured login nodes built on the Xeon
E5 architecture. Login nodes are also used to compile and install the software. The
supercomputer is powered by Red Hat Enterprise Linux 7.6 and Slurm Workload
Manager 17.02.11.

HPC Bura [CNRM, 2021] is a heterogeneous supercomputer owned by the Univer-
sity of Rijeka. Architecturally, it can be divided into three distinct parts:

◦ Cluster

◦ SMP

◦ GPGPU

Cluster section is a multicomputer system comprised of 288 compute nodes with two
Xeon E5 processors per node (24 physical cores per node). A total of 6912 physical
cores are available to users. Each node has 64 GB of memory and 320 GB of disk space,
respectively.

SMP section is a multiprocessor system with a large amount of shared memory.
SMP is made up of 16 Xeon E7 processors with a total of 256 physical cores, 6 TB of
memory and 245 TB of local storage. Two nodes are available.

GPGPU section is comprised of four nodes with two Xeon E5 processors (16 physi-
cal cores per node) and two NVIDIA Tesla K40 general-purpose GPUs per node.

" Important Note

In order to connect to HPC Bura, a VPN connection must be established.
Please contact your HPC provider in order to determine if there are any
specific / additional requirements to connect to their HPC.

2.2 Commands 83

2.2 Commands

University of Rijeka

SLURM offers many commands for job submission / resource allocation and job
management. The availability of some commands, however, can vary depending on
SLURM implementation specificities. For example, accounting commands and access
to the relevant data can either be restricted or the accounting can simply be omitted /
not monitored (slurmdbd daemon inactive). In view of that, in this section, we will
focus on commands which are essential and should be available in every HPC system.

sinfo

Command sinfo is typically used to collect information on available partitions and
respective nodes. Partition is a group of compute nodes and is defined based on e.g.
configuration / architectural equivalence or any other arbitrary reason / requirement.
Nodes grouped into a partition share limits and policies. Creating partitions defines
separate queues to which jobs can be submitted. This can be useful for separating e.g.
commercial and non-commercial users. Partitions can also overlap.

[user@bura2 ~]$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
computes_thin* up infinite 10 drain* bura[110-119]
computes_thin* up infinite 10 down* bura[100-109]
computes_thin* up infinite 10 drain bura[120-129]
computes_thin* up infinite 5 mix bura[130-134]
computes_thin* up infinite 5 alloc bura[135-139]
computes_thin* up infinite 248 idle bura[140-387]
guest up 7-00:00:00 10 drain* bura[110-119]
guest up 7-00:00:00 10 down* bura[100-109]
guest up 7-00:00:00 10 drain bura[120-129]
guest up 7-00:00:00 5 mix bura[130-134]
guest up 7-00:00:00 5 alloc bura[135-139]
guest up 7-00:00:00 248 idle bura[140-387]
comp_gpu up infinite 4 idle bura[500-503]
comp_smp up infinite 2 idle bura[36,44]

sinfo command can be modified with different options. For example, -s allows for a
succinct overview of partitions and node statuses.

[user@bura2 ~]$ sinfo -s
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST
computes_thin* up infinite 10/248/30/288 bura[100-387]
guest up 7-00:00:00 10/248/30/288 bura[100-387]
comp_gpu up infinite 0/4/0/4 bura[500-503]
comp_smp up infinite 0/2/0/2 bura[36,44]

In order to view nodes based on their status, option -t followed by the status of interest
can be useful. Additionally, we can track e.g. idle nodes in a specific partition by
invoking option -p and specifying a partition.

[user@bura2 ~]$ sinfo -t IDLE -p comp_SCjobs
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
comp_SCjobs up infinite 8 idle bura[180-187]

84 Chapter 2. Using the SLURM workload manager

squeue

squeue displays information on all jobs currently in queues, regardless of whether the
jobs are running, pending, or waiting for a specific trigger (e.g. dependency).

[user@bura2 ~]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
22807 comp_smp job7 user PD 0:00 2 (Resources)
22801 computes_ job1 user R 48:59 1 bura160
22802 comp_smp job2 userA R 35:11 1 bura36
22803 comp_gpu job3 userB R 13:09 1 bura500
22804 computes_ job4 userA R 11:05 1 bura161
22805 computes_ job5 user R 8:52 4 bura[162-165]
22806 computes_ job6 user R 5:52 1 bura166

Typically, squeue command is used with option -u followed by a username. This will
display all jobs for a specific user.

[user@bura2 ~]$ squeue -u userA
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
22802 comp_smp job2 userA R 35:11 1 bura36
22804 computes_ job4 userA R 11:05 1 bura161

Similarly, option -p followed by the partition name and -t followed by a job state code
(e.g. R, PD) will display all jobs running on a specific partition and all jobs with a
specific state, respectively.

sdiag

Command sdiag is usually not interesting to users as it provides detailed information
on the scheduler, including statistics. This includes e.g. job counts and slurmctld
thread and agent counts.

[user@bura2 ~]$ sdiag

sdiag output at Tue Jan 1 12:21:44 2022
Data since Tue Jan 1 01:00:00 2022

Server thread count: 3
Agent queue size: 0

Jobs submitted: 8665
Jobs started: 8666
Jobs completed: 8563
Jobs canceled: 129
Jobs failed: 0

Main schedule statistics (microseconds):
Last cycle: 164
Max cycle: 31986
Total cycles: 11362
Mean cycle: 628
Mean depth cycle: 0
Cycles per minute: 15
Last queue length: 0
...

2.2 Commands 85

scontrol
scontrol can be used to display status data and information on specific SLURM
/ HPC components. System administrators can use scontrol to modify SLURM
configuration (requires proper permissions). For example, command scontrol show
partition $partition_name will show information on a specific partition.
[user@bura2 ~]$ scontrol show partition comp_smp
PartitionName=comp_smp
AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
AllocNodes=ALL Default=NO QoS=N/A
DefaultTime=NONE DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO
MaxNodes=UNLIMITED MaxTime=UNLIMITED MinNodes=1 LLN=NO MaxCPUsPerNode=UNLIMITED
Nodes=,bura36,bura44
PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO
OverTimeLimit=NONE PreemptMode=OFF
State=UP TotalCPUs=512 TotalNodes=2 SelectTypeParameters=NONE
DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED

Furthermore, scontrol show nodes $node_name can be used to gather information on
a specific node. Command scontrol is versatile. It can be used to display the specifics
of a job.
[user@bura2 ~]$ scontrol show job 22801
JobId=22801 JobName=job1
UserId=user(1010) GroupId=user(1010) MCS_label=N/A
Priority=4294542294 Nice=0 Account=(null) QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
RunTime=00:46:64 TimeLimit=00:120:00 TimeMin=N/A
SubmitTime=2022-01-01T11:31:23 EligibleTime=2022-01-01T13:31:23
StartTime=2022-01-01T11:31:23 EndTime=2022-01-01T13:31:23 Deadline=N/A
PreemptTime=None SuspendTime=None SecsPreSuspend=0
Partition=computes_thin AllocNode:Sid=bura160:31216
ReqNodeList=(null) ExcNodeList=(null)
NodeList=bura160
BatchHost=bura160
NumNodes=1 NumCPUs=22 NumTasks=22 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
TRES=cpu=22,mem=22G,node=1
Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
MinCPUsNode=1 MinMemoryCPU=1G MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00
Gres=(null) Reservation=(null)
OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
Command=/home/user/run.sh
WorkDir=/home/user
StdErr=/home/user/log.out
StdIn=/dev/null
StdOut=/home/user/log.out
Power=

By including option -dd, the batch script for a specified job will additionally be
displayed. Finally, scontrol can be used to manage a job.
[user@bura2 ~]$ scontrol hold 22801
[user@bura2 ~]$ scontrol release 22801
[user@bura2 ~]$ scontrol suspend 22805
[user@bura2 ~]$ scontrol resume 22805
[user@bura2 ~]$ scontrol requeue 22805

86 Chapter 2. Using the SLURM workload manager

srun
srun is used to start one or more tasks inside an allocation (resources are inherited). It
is typically used in conjunction with salloc or inside a sbatch script. If no resources are
allocated, srun will create an allocation (minimal) or one can be specified by the user.
[user@bura2 ~]$ srun -N 2 -n 48 -t 30:00 ./myjob

salloc
Command salloc is used to request allocation for an interactive job. Once requested
resources are approved, it is necessary to connect to the approved allocation.
[user@bura2 ~]$ salloc --nodes=1 --time=60:00 --partition=computes_thin
salloc: Granted job allocation 22851
[user@bura2 ~]$ srun --jobid=22851 --pty /bin/bash
[user@bura155 ~]$ hostname
bura155
[user@bura155 ~]$ exit
exit
[user@bura2 ~]$ exit
exit
salloc: Relinquishing job allocation 22851

If connected to an allocation (node), it is assumed that input will occur, otherwise,
connection will be terminated (connection only, allocated resources will be reserved
until time expires). A more straightforward allocation can be done in a single line.
[user@bura2 ~]$ salloc -N 1 -t 60:00 -p computes_thin srun --pty bash
salloc: Granted job allocation 22855
[user@bura156 ~]$ exit
exit
salloc: Relinquishing job allocation 22855

Finally, srun command can be used to execute a job without the need to connect to
the allocation. If srun is not used, code will be executed on the current node (usually
login node).
[user@bura2 ~]$ salloc -N 3 -t 60:00 -p computes_thin
salloc: Granted job allocation 22860
[user@bura2 ~]$ srun /bin/hostname
bura155
bura156
bura157
[user@bura2 ~]$ /bin/hostname
bura2

sbatch
sbatch submits a batch script to SLURM. Typically, all relevant resource requests and
jobs are defined in the script. SLURM scripts will be discussed in section 2.3.
[user@bura2 ~]$ sbatch slurm_script.sh

scancel
Command scancel cancels a job or a job step (this includes allocations).

2.2 Commands 87

[user@bura2 ~]$ scancel 22860

Similarly to all other commands, scancel can have multiple options, thus it is possible
to cancel e.g. multiple jobs on a given partition started by the user.

[user@bura2 ~]$ scancel -u user -p computes_thin

sreport
sreport generates reports from job accounting data (including utilization statistics).
Accounting must be enabled and available (active slurmdbd daemon). The command
can be used to report usage for a specific user in a set period.

[user@bura2 ~]$ sreport user topusage start=1/1/22 end=1/10/22 -t hours users=user

sacct
sacct can be used to retrieve and display accounting data for all jobs in the database.
Accounting must be enabled and available (active slurmdbd daemon). The command
can be used to e.g. inspect job history.

[user@bura2 ~]$ sacct -X -u user

sacctmgr
Command sacctmgr can be used to display and modify SLURM account information.
Accounting must be enabled and available (active slurmdbd daemon).

[user@bura2 ~]$ sacctmgr -s show user name=user

88 Chapter 2. Using the SLURM workload manager

2.3 Scripts

University of Rijeka

SLURM jobs are typically submitted through a batch script which is often referred to
as a submission script. Submission scripts are simple shell scripts and include specific
commands / parameters that are to be interpreted by SLURM. These commands
describe resource requests and specify additional options / requirements. Following
the resource allocation, specific code / commands / program call noted in the script is
executed. A script example is given below.

#!/bin/bash
#SBATCH --job-name=job
#SBATCH --output=output.out
#SBATCH --time=00:10:00
#SBATCH --partition=computes_thin
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=1G

srun hostname

Slurm directives (lines beginning with #SBATCH) should follow the #!/bin/bash. Script
is executed by using the previously described sbatch command.

[user@bura2 ~]$ sbatch script.sh

" Important Note

Submission script executed with sh script.sh will run on the login node.
This is an improper way of submitting a job.

2.3.1 Resource requests

Memory and processors are typically the most important resources in an HPC system.
The allocation of these resources is governed by different parameters.

The parameter --ntasks, -n is used to define the number of tasks (processes) for
a distributed job. By default, each process is assigned a single processor. SLURM
will manage the distribution of tasks unless directly specified with --ntasks-per-
node. Additionally, requested tasks can be distributed across nodes by specifying the
number of nodes with --nodes, -N. This approach, however, does not guarantee equal
distribution of tasks. --ntasks-per-gpu is relevant for GPU nodes and specifies the
number of tasks to be invoked per each GPU.

#SBATCH --nodes=3
#SBATCH --ntasks=30

Noted script excerpt will request resources for 30 tasks. The distribution of these tasks
is governed by SLURM. Distribution can also be conducted manually.

#SBATCH --nodes=3
#SBATCH --ntasks-per-node=10

2.3 Scripts 89

The parameter --cpus-per-task, -c facilitates the definition of multiple processors
for each task. SLURM will ensure that processors for each task are located on the same
node. This approach is common for OpenMP problems.

#SBATCH --ntasks=1
#SBATCH --cpus-per-task=28

Memory requests can be defined with one of three parameters: --mem, --mem-per-
cpu and --mem-per-gpu. --mem defines required memory per node. Other parameters
are self-explanatory. Specifying memory requests is encouraged as otherwise, depend-
ing on the HPC system, this might imply that the entire node is necessary i.e. should
be allocated. If --mem is set to zero, the entire node will be allocated.

#SBATCH --ntasks=4
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024MB

Apart from processors, users might need to access GPUs. The required number of
GPUs can be specified with --gpus, -G. Additionally, necessary GPUs can be defined
on a per-node (--gpus-per-node) or per-task basis (--gpus-per-task). More commonly,
however, GPUs are requested as generic resources using the --gres. The parameter
is followed by an argument that defines the resource and necessary amount e.g.
--gres=gpu:2.

2.3.2 Common parameters

Job name can be defined with --job-name, -J. Defining a name enables easier identifi-
cation / tracking of a job while in a queue.

#SBATCH --job-name=job

Standard output i.e. output and errors of a job can be redirected to a specific file
with --output, -o parameter.

#SBATCH --output=output.out

Specifying a job time limit is important as it prevents unresponsive or bad-behaving
jobs from unnecessarily keeping resources allocated for a longer period. If not defined,
it defaults to the partition time limit. Parameter --time, -t accepts most standard time
formats.

#SBATCH --time=00:10:00

Jobs can request resources from specific segments of an HPC system called parti-
tions. The parameter --partition, -p indicates which resources is SLURM to allocate
(which resource pool to use). If not defined, the default partition will be utilised.

#SBATCH --partition=computes_thin

Jobs can be executed exclusively on requested resources (nodes) with --exclusive.
This means that other jobs or users can not share/utilise node(s) which are allocated
to the current job.

#SBATCH --exclusive

90 Chapter 2. Using the SLURM workload manager

SLURM allows explicit specification of hosts (compute nodes) to be used for a
specific job. The parameter --nodelist, -w followed by the hostnames indicates which
nodes to use. If needed, additional nodes will be utilised so as to satisfy the defined
resource request.

#SBATCH --nodelist=bura[100-110]

Arrays (--array, -a) can be used to quickly execute multiple similar job instances
using the same job parameters. If it is necessary e.g. to parse 1000 textual files named
file_$NUMBER.txt where NUMBER is an integer from 1 to 1000, arrays can be used
to directly submit jobs which will parse said files. It is necessary, however, to specify
(use) proper array variables. In noted example, NUMBER should be replaced with
SLURM_ARRAY_TASK_ID.

...
#SBATCH --array=0-9

...
echo Task $SLURM_ARRAY_TASK_ID
python fileditor.py $SLURM_ARRAY_TASK_ID

2.4 Examples 91

2.4 Examples

University of Rijeka

2.4.1 Shared memory examples

Shared memory problems are executed on a single node and spawn a single task that
can utilise multiple processors. OpenMP jobs are a prime example of shared memory
parallelism within a single node. This parallelism concept is known as multithreading.

Resource-demanding OpenMP jobs on HPC Bura are typically executed on the SMP
partition (comp_smp). Simpler jobs can be executed on cluster nodes (computes_thin).
Environment variable OMP_NUM_THREADS should be set and should equal the
number of processors requested for the task (SLURM_CPUS_PER_TASK).

#!/bin/bash
#SBATCH --job-name=omp
#SBATCH --output=omp.out
#SBATCH --time=00:60:00
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=12
#SBATCH --mem-per-cpu=1024M
#SBATCH --partition=computes_thin

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./omp_problem

#!/bin/bash
#SBATCH --job-name=smp_omp
#SBATCH --output=smp_omp.out
#SBATCH --time=24:00:00
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=128
#SBATCH --mem=4T
#SBATCH --partition=comp_smp

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./complex_omp_problem

2.4.2 Distributed memory examples

Programs that can utilise distributed memory typically rely on Message Passing
Interface (MPI) to achieve communication between distributed resources. MPI jobs are
executed on the cluster (computes_thin).

#!/bin/bash
#SBATCH --job-name=mpi
#SBATCH --output=mpi.out
#SBATCH --time=12:00:00
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=24
#SBATCH --mem-per-cpu=1024M
#SBATCH --partition=computes_thin

srun ./mpi_problem

92 Chapter 2. Using the SLURM workload manager

Usually, however, it is necessary to prepare the environment for the software that is
to be used. HPC systems utilise environment modules to properly configure the user’s
shell environment. This approach enables compartmentalization and coexistence of
different program variants (e.g. different MPI versions / implementations can be
installed and can be loaded on request).

Environment modules on HPC Bura are deployed on login nodes and are not
available on compute nodes hence users must prepare the environment prior to
submitting a job (if available on compute nodes, modules can be loaded inside the
submission script). All available modules can be inspected with module avail.

module load OpenFOAM_8/OF8_IntelMPI-2019.8_gcc10.2_OPT

The noted module will load OpenFOAM 8 as well as GCC 10.2 and Intel MPI 2019.8.
MPI job can now be submitted using either srun or mpirun.

#!/bin/bash
#SBATCH --job-name=mpi
#SBATCH --output=mpi.out
#SBATCH --time=12:00:00
#SBATCH --nodes=3
#SBATCH --ntasks-per-node=24
#SBATCH --mem-per-cpu=1024M
#SBATCH --partition=computes_thin
#SBATCH --exclusive

sed -i "s/numberOfSubdomains.*[0-9][0-9]*;/numberOfSubdomains $SLURM_NTASKS;/g" \
system/decomposeParDict

decomposePar > log.decomposePar

mpirun -np $SLURM_NTASKS pimpleFoam -parallel > log.LOGGIT 2>&1

2.4.3 GPU jobs

A commercial Lattice Boltzmann CFD code ultraFluidX utilises GPU accelerators. The
environment can be configured by loading the appropriate environment module.

module load ultraFluidX

ultraFluidX can now be executed with mpirun where the number of processors must
be larger than the number of GPUs (--gpus + 1).

#!/bin/bash
#SBATCH --job-name=gpu
#SBATCH --output=gpu.out
#SBATCH --time=12:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=2
#SBATCH --mem-per-cpu=1024M
#SBATCH --partition=comp_gpu

mpirun -np 2 ultraFluidX problem.xml -o output

2.4 Examples 93

2.4.4 Hybrid problems
Hybrid MPI / OpenMP jobs rely on OpenMP for intra-nodal communication (inside
each SMP node) while MPI facilitates inter-nodal communication. MPI environment
module must be loaded prior to running the script.

module load mpi/openmpi-4.1.1
mpicc -fopenmp hybrid_problem.c -o hybrid_problem

If executing a custom code, code must be compiled with proper options (e.g. -fopenmp)
due to included OpenMP directives.

#!/bin/bash
#SBATCH --job-name=hybrid
#SBATCH --output=hybrid.out
#SBATCH --time=12:00:00
#SBATCH --ntasks=6
#SBATCH --cpus-per-task=10
#SBATCH --mem-per-cpu=1024M
#SBATCH --partition=computes_thin

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
mpirun ./hybrid_problem

Part III

Problems and examples

Introduction
Creating a Linux environment on your computer
Simulation of a bubble column reactor
Simulation of complex fluid dynamic fields

1. OpenFOAM

98 Chapter 1. OpenFOAM

1.1 Introduction

Technical University of Denmark

OpenFOAM includes a versatile range of solvers that can be used for common
transport problems (e.g. fluid flow inside simple domains) or, for highly specific use
cases, can be implemented by defining the mathematical model (e.g. simulation of large-
scale fermentations with tracking of individual cells). In other words, OpenFOAM can
be adapted to individual needs. Backed by an active community, it is also an attractive
choice for CFD beginners.

OpenFOAM is deployed as a Linux package. Although installation and use are
possible under other operating systems, it is recommended to have OpenFOAM
installed on Linux. This has several advantages. First, Linux will allow a more
streamlined CFD workflow. Several core routines are native to the Linux environment
and are conveniently accessed from the Linux command line. Repetitive tasks can be
effectively reduced through shell scripting, which also contributes to building better
programming habits. Second, the more complex a CFD simulation gets, the more
crucial it will become to simulate on a high-performance computing (HPC) cluster. In
this sense, by developing on Linux, the transition to the HPC ecosystem should be
rather simple.

It is worth mentioning that Linux evolved from Unix, the early operating system
that was originally designed for HPC applications. Therefore, Linux-based operating
systems are commonplace when it comes to managing HPC clusters. To illustrate; the
world’s top 500 fastest supercomputers all run on Linux and there are no signs that
this will change anytime soon. If you are interested in running CFD calculations on
HPC at some point, it is sensible to incorporate Linux in your workflow right from the
start. As a rule of thumb, a personal computer might be sufficient to solve simple CFD
problems for mesh sizes of up to 105 cells per core. For use cases involving e.g. 106

cells or more, you will want to migrate to an HPC cluster to perform the CPU-intensive
calculations.

There are several options to set up OpenFOAM on your personal computer. For
example, you might install Linux as your primary operating system and install Open-
FOAM on top of that. Admittedly, this would require a rather drastic change to your
system, especially if you are only starting. So unless you have a spare computer lying
around, this is typically not feasible for most novel users. Another option is the use
of pre-compiled container packages (e.g. Docker image). OpenFOAM provides con-
tainer images for many operating systems, including Windows, MacOSX, and Linux.
A major advantage of this approach is the simple installation procedure. However,
there are also disadvantages. Container images require another software layer for
program execution and this is adding to the system load. The container packages
also lack visualization tools, such as ParaView. Due to performance limitations, it is
recommended to post-process simulation data with a native installation of ParaView
rather than doing so directly in the container image. Unfortunately, this is disrupting
the CFD workflow and provides only a little space to acquire some Linux basics. A
third installation option - and the preferred one for this tutorial - is the use of a Virtual
Machine (VM). In this way, an entire Linux environment can be created within your
running host system, be it Windows, MacOSX, or different. It will provide the user
with a safe test bed for the OpenFOAM installation and the simulation cases.

In the first part of this tutorial, we will focus on building a minimal working CFD

1.2 Creating a Linux environment on your computer 99

setup on your local computer. To this end, you will create a Linux environment inside
a VM and install OpenFOAM under Linux.

1.2 Creating a Linux environment on your computer

We will now focus on building a Linux environment on your personal computer.
Should you already have access to a Linux environment, you can reasonably skip
this part. However, considering that this tutorial is targeted particularly at first-time
users, detailed instructions are provided on how to set up such an environment on a
Windows or MacOSX system. We will use VirtualBox to set up a Linux environment
inside a VM. The chosen Linux distribution is Debian with XFCE desktop environment.

" Important Note

Make sure that you have at least 8 GB of RAM installed on your
computer and at least 25 GB of free disk space. You should have internet
access. Ensure that you have hardware virtualization VT-x/VT-d or
AMD-v enabled in your BIOS settings.

1.2.1 Download and install VirtualBox

VirtualBox is an open-source hypervisor used to virtualize operating systems within
an existing host. The virtualized system is known as Virtual Machine (VM). VMs
provide a safe sandbox for software developments without affecting the host system.
The CFD simulation described in this tutorial will be developed inside a Debian
(Linux) VM. Therefore, as a first step, download the latest version of VirtualBox at
https://www.virtualbox.org/wiki/Downloads. At the time of writing, VirtualBox
7.0.0. is the latest version. Select the installer version that matches your host system,
e.g. Windows. Once downloaded, install VirtualBox. Detailed information on the
installation procedure is available at https://www.virtualbox.org/manual/.

1.2.2 Download a Debian image

Debian is a stable, open-source desktop operating system based on the Linux kernel.
Download the latest iso-image for Debian with the Xfce desktop environment at . At
the time of writing, the latest stable Debian release is Debian 11.5. If you plan on
deploying it on a 64-bit PC (amd64), the selected iso-file may read as debian-live-11.5.0-
amd64-xfce.iso.

Once the download is complete, verify the file’s checksum. Even though it is
generally a good practice to do so, please note that this step is not strictly required.
However, it will allow you to confirm the integrity of your download and may prevent
you from dealing with corrupt or broken files. On a Windows system, you can use the
built-in certUtil command. Proceed as follows:

◦ Open the directory that contains the iso-image.

◦ Click on the address bar and type cmd. This will bring up a command prompt.

◦ In the command prompt, run certUtil -hashfile <FILE_NAME> SHA256, where
<FILE_NAME> has to be replaced with the exact name of the iso file you
downloaded.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/
https://www.debian.org/CD/live/

100 Chapter 1. OpenFOAM

The command will return the file’s SHA256 checksum. Compare this to the official
SHA256SUMS file which is provided alongside the iso-images at . The calculated
checksum and the official checksum must match.

1.2.3 Create a new Virtual Machine
Start VirtualBox and click the New button. A dialog box appears (see Figure 1.1). In
the Name and Operating System section, type Debian in the Name field, set Type to
Linux and Version to Debian (64-bit). As for the ISO Image, select the Debian iso file
which you downloaded in the previous step. Make sure to check the Skip Unattended
Installation option.

Figure 1.1 Configuring a Virtual Machine.

Head over to the Hardware section. Set the Base Memory to at least 4 GB (4096 MB).
For better performance of the VM, increase the memory size as long as the sliding
indicator remains in the green range. Please keep in mind that the amount of memory
selected here will be taken away from the host machine and presented to the VM.
Therefore, setting this number too high will decrease the host system’s performance as
long as the VM is running. Select the number of Processors. The larger the number of
processors, the more CPU resources will be allocated to the VM. Again, move up the
slider, but make sure that the slider remains in the green range.

In the Hard Disk section, create a Virtual Hard Disk of the VDI (VirtualBox Disk
Image) type and set Hard Disk Size to least 25 GB. Click on Finish. You will now return
to the VirtualBox main window.

1.2.4 Installing Debian on the VM
In the main window, select the Debian VM and click the Start button. The VM is now
powering up. From Debian’s boot menu, select Graphical Debian Installer using the

https://cdimage.debian.org/debian-cd/current-live/amd64/iso-hybrid/SHA256SUMS

1.2 Creating a Linux environment on your computer 101

arrow keys and hit Enter. Follow the installation procedure. Specify your language,
location and keyboard settings. Next, set Hostname to debian and Domain Name to
localhost – for a personal VM. Choose a Root Password and remember it. Define a
User Name and a User Password. For the sake of this tutorial, cfd was chosen as the
<username> and debian as the <password>. Remember your credentials to avoid losing
access to the VM at a later time. As you proceed, select the correct time based on your
location.

Figure 1.2 Snapshots of the Debian installation process. Pictures are arranged on a grid, following the
actual installation sequence. For each row, pictures are ordered from left to right, and rows are ordered
from top to bottom.

In the next step, you will partition the hard drive for the Debian installation. This
will not affect your host system. In the Partition disks dialog, choose Guided – use
entire disk and click Continue. You should now select the virtual hard disk that was
created during the VM setup (see Figure 1.2), i.e. the VBOX hard disk with a size of
25 GB. Click Continue. For the partitioning scheme, select All files in one partition and
click Continue. Select Finish partitioning and write changes to disk and click Continue. Tick
Yes when asked to write changes to disk. Click Continue. The installation will start.
The process takes a couple of minutes.

Once this installation has stopped, you will have to Configure the package manager.
When asked to use a network mirror tick Yes and click Continue. Select deb.debian.org as

102 Chapter 1. OpenFOAM

the Debian archive mirror and click Continue. Leave the HTTP proxy information
blank. Click Continue. When asked to Install the GRUB boot loader to your primary
drive tick Yes and press Continue. Now, select the Device for boot loader installation.
There is only one hard drive available in the selection menu (i.e. /dev/sda). Select this
drive and press Continue. The installation will now finish. Noted process is shown in
Figure 1.3.

Figure 1.3 Snapshots of the Debian installation process. Final steps in the process.

1.2.5 Configuring the VM
The system will reboot automatically after installation. A login screen appears. Enter
the username and password as defined during the installation process. Click on Log In.
A desktop environment will come up, indicating that the OS is now up and running.
At this time, you might experience a low screen resolution (800x600). To enable higher
screen resolutions, we will now install VirtualBox Guest Additions. Make sure the VM
window is in focus and press Ctrl-Alt-T to bring up a terminal window. Alternatively,
you can click the terminal icon at the bottom. Type the following commands in the
terminal window and complete each line by pressing the Enter key.

su
sudo usermod -aG sudo <username>
su <username>

The su command will prompt you for a password. Type the root password and
confirm with the Enter key. This will sign you in as the system’s superuser (or root).
The root user is a special user account that has unrestricted read and write privileges
to all areas of the operating system. The root user can also add other user accounts
to the sudo group. Users in that group benefit from the same root privileges should
the need arise. Therefore, before executing sudo usermod -aG sudo <username>,
replace <username> with your actual username (e.g. cfd) so as to add your personal
user account to the sudo group. Finally, su <username> will switch you back from root
to your normal user account. It is now time to install some prerequisite packages:

sudo apt update -y && sudo apt upgrade
sudo apt install build-essential dkms linux-headers-$(uname -r)

1.2 Creating a Linux environment on your computer 103

The sudo command grants the personal user account (e.g. cfd) temporary root
privileges. The first command will thus update the package information. Type the first
command line and press Enter. Confirm by entering your normal user password. When
prompted for your approval to continue, type Y and press Enter. Wait until the update
is complete. The second command will install the build essentials package, DKMS
framework, and kernel headers. Type the second command line in the terminal and
press Enter. Continue as before.

To install VirtualBox Guest Additions, proceed as follows. From the menu bar in
the Debian VM window, select Devices -> Insert Guest Additions CD image. A disc icon
appears on the desktop. Install guest additions by entering the following commands
in the terminal:

sudo mkdir -p /mnt/cdrom
sudo mount /dev/cdrom /mnt/cdrom
cd /mnt/drom
sudo ./VBoxLinuxAdditions.run

Once the installation is complete, type sudo reboot and press Enter. The system
will now restart and changes should take effect. Log in with your user credentials.
From the menu bar in the Debian VM window, select View -> Auto-resize Guest Display.
You can now maximize the VM window and the VM screen should adapt to full
resolution. It is also useful to allow copy-pasting between the host system and the VM.
To do so, select Devices -> Shared Clipboard -> Bidirectional.

Now, bring up a terminal and run sudo usermod -aG vboxsf <username>. This
will add your user account to the vboxsf user group, which is necessary to create a
shared directory between the host system and the VM. This will come in handy in
many situations, for example, when exporting simulation results to the host system.
From the VM menu, select Devices -> Shared Folders -> Shared Folder Settings. In the
pop-up menu, click the Add folder (plus) button on the right. Select a Folder Path that
you would like to become the shared directory on your host system. Assign a Folder
Name (e.g. share) and select the Auto-mount and Make Permanent option. Click OK.
After the system reboot, the shared directory can be accessed as /media/sf_share/
where the chosen directory name has been prepended by sf_.

1.2.6 Installing OpenFOAM

At this point, you should have a Linux system running on your computer. It is now
time to install OpenFOAM. Several Linux distributions offer pre-compiled software
packages for OpenFOAM as well as for accompanying software such as ParaView.
Nevertheless, depending on the specific distribution (e.g. Debian, Ubuntu, CentOS),
it may be necessary to compile OpenFOAM from the source. Reasons for taking this
approach might be that the available software builds in the repository are outdated
and you wish to upgrade to a more recent version. Another reason might be that
you desire to install a very specific version of OpenFOAM so as to create identical
simulation setups on two or more computers, for example, if you wish to ensure
unified simulation behavior among your local computer and a cloud server operating
on the same simulation.

In this tutorial, we are going to build OpenFOAM and ParaView from source. We
will use the latest source packages provided by the OpenFOAM Foundation. The source
code is hosted at https://github.com/openfoam and can be downloaded, compiled
and run on any Linux-based operating system. The latest stable release at the time of

https://github.com/openfoam

104 Chapter 1. OpenFOAM

writing is OpenFOAM 10. Open a terminal and execute the following commands. If
prompted, confirm the installation with Y and Enter.

updates the package lists
sudo apt-get update

Install required packages for repositories and compilation
sudo apt-get install build-essential cmake git ca-certificates curl

Install required packages for OpenFOAM
sudo apt-get install flex libfl-dev bison zlib1g-dev libboost-system-dev libboost-

thread-dev libopenmpi-dev openmpi-bin gnuplot libreadline-dev libncurses-dev
libxt-dev

We will also install ParaView in order to visualize simulation results. ParaView
depends on the qt5-default package, which is missing from the software repositories
in the current release. However, there is a workaround. We will first install the equivs
package. With this tool, the missing package can be created and all the required
dependencies installed.

Install the equivs package
sudo apt-get install equivs

Switch to the "Downloads" directory
cd ~/Downloads

Copy-paste below text (as is) to create the package information
cat <<EOF > qt5-default-control
Package: qt5-default
Source: qtbase-opensource-src
Version: 5.99.99
Architecture: all
Depends: qtbase5-dev, qtchooser
Suggests: qt5-qmake, qtbase5-dev-tools
Conflicts: qt4-default
Section: libdevel
Priority: optional
Homepage: http://qt-project.org/
Description: Qt 5 development defaults package
EOF

Build and install the package
equivs-build qt5-default-control
sudo apt-get install ./qt5-default_5.99.99_all.deb

Install other required packages
sudo apt-get install libqt5x11extras5-dev libxt-dev qttools5-dev ptscotch

We will now create the OpenFOAM installation directory and clone the source
repository. Note the ~ character, which is a shortcut to denote your home directory.
The mkdir command will thus create the OpenFOAM directory within your home
directory. You will then switch to the new directory, using the cd command, and finally
clone the packages from the remote repository, using the git clone command.

mkdir ~/OpenFOAM
cd ~/OpenFOAM
git clone https://github.com/OpenFOAM/OpenFOAM-10.git
git clone https://github.com/OpenFOAM/ThirdParty-10.git

1.3 Simulation of a bubble column reactor 105

By issuing the ls command, you can confirm that two new directories, OpenFOAM-10
and ThirdParty-10, have been created. These directories contain the OpenFOAM
source code and the source code of required third-party tools, including ParaView.
To compile the OpenFOAM source code, set a permanent environment variable for
OpenFOAM and add it to the source path.

echo ’source $HOME/OpenFOAM/OpenFOAM-10/etc/bashrc’ >> ~/.bashrc
source $HOME/.bashrc
echo $WM_PROJECT_DIR
echo $ParaView_VERSION

Confirm that this has worked correctly. The second-last line should return the
OpenFOAM directory (e.g. /home/cfd/OpenFoam/OpenFOAM-10) and the last line
should return ParaView’s version number (e.g. 5.6.3). ParaView is the visualization ap-
plication that comes bundled with OpenFOAM. It can be installed from the ThirdParty
directory as follows.

cd ~/OpenFOAM/ThirdParty-10
./makeParaView
wmRefresh

The makeParaView script will now compile the ParaView source code. This means
that the program’s source code will be translated into machine code that can be
executed on your computer. Depending on the allocated system resources (i.e. CPU,
RAM), the compilation process may take a long time, up to several hours. Finish the
process by typing the wmRefresh command, which will update the environment.

As the final step, we are going to compile OpenFOAM. Change to the OpenFOAM
directory and run the Allwmake script. Again, please note that compilation may take
several hours.

cd ~/OpenFOAM/OpenFOAM-10
./Allwmake -j

1.3 Simulation of a bubble column reactor

In this section, we will discuss the mixing behaviour inside a bubble column reactor.
A bubble column reactor is a reactor type frequently encountered in different aerobic
bioprocesses as it combines oxygen supply with in-situ mixing. Oxygen, or more
typically air, is supplied from the reactor bottom such that the gas rises in the liquid
column. The rising gas bubbles create a mixing effect.

Oxygen is required by the microorganisms not only for survival but also to allow
the formation of desired biochemical products (e.g. antibiotics). At the same time,
proper mixing is necessary to avoid local shortage or accumulation of substrate (e.g.
oxygen, glucose). The lack or over-supply of the substrate can have detrimental
effects on fermentation, lower product yield and productivity, undesired by-product
formation, or even the formation of reactor dead zones due to starving cell populations.
Consequently, the degree of mixing is an important design parameter in bioreactor
engineering. CFD simulations are a powerful tool to provide deeper insights into the
physico-chemical mechanisms occurring inside the reactor, and even inside the cells.

The reactor is a cylinder with height H = 1 m and internal diameter D = 0.2 m. In
the absence of aeration, the initial height of the liquid in the reactor column is L =

106 Chapter 1. OpenFOAM

0.6 m. The air stream at the inlet is pointing upwards and has a local velocity of v =
0.1 m/s. The reactor is operated at a reference pressure of p = 1 atm (101325 Pa) and
the initial temperature is T = 30 °C (303.15 K) for both, the gas and the liquid. The
problem geometry and operating parameters are summarized in Fig. 1.4.

Figure 1.4 Problem specification for the simulation case: Subfigure A depicts the bubble column reactor
with air supply from the bottom. The reactor has a height of H = 1 m and a diameter of D = 0.2 m. The
reactor is initially filled with water up to a height of L = 0.6 m. Subfigure B depicts the mesh, representing
the reactor configuration in a 2D plane through the reactor middle axis. The mesh measures 25 cells in
the x-direction, 200 cells in the y-direction, and 1 cell in the z-direction.

We will now create a new OpenFOAM project and define the problem. We will
then use OpenFOAM to calculate a solution to our problem definition, and finally, we
will use ParaView to visualize the results. Bring up a terminal window and type the
following commands to search for existing OpenFOAM templates relating to bubble
column reactors. Select the RAS/bubbleColumn template and copy it to the bioreactor
directory in your home directory.
cd $FOAM_TUTORIALS
find . -iname "*bubble*"
cp -r $FOAM_TUTORIALS/multiphase/multiphaseEulerFoam/RAS/bubbleColumn $HOME/

bioreactor

You have now created a new project directory, named bioreactor, which is holding
the simulation files. Switch to that directory by typing cd /bioreactor. Now, type the
ls command to list the directory contents. Folders are indicated by bold blue letters,
while file names are printed in white standard font. From here, you can inspect the
individual project directories. For example, you should find the constant, system, and
0 directories. Each of these directories has a specific meaning within the simulation
structure.

The constant directory specifies the physical properties for the simulation (e.g.

1.3 Simulation of a bubble column reactor 107

the properties of the individual phases such as water and air). The system directory
contains parameters related to the solution procedure: The controlDict file specifies the
simulation start/end time, the integration step size, and the numerical solver. In this
tutorial, we will be using the multiphaseEulerFoam solver, which is a solver suited for
a system of any number of compressible fluid phases with a common pressure, but
otherwise separate properties. In other words, it is a solver that works well for the
bubble column reactor, which contains a mixture of air and water. Additional solver
settings and tolerances are described in the fvSolutions file. The problem geometry,
or mesh, is described in the blockMeshDict file. Finally, the 0 directory is a special
time directory that contains the initial conditions for the simulation. It will hold one
text file for each field that is required for the particular solver (e.g. U for velocity,
p for pressure). During the simulation, several new time directories will be created.
The name of each time directory is based on the simulated time at which the data is
written.

1.3.1 Mesh generation
Definition of the numerical mesh for the bubble column reactor can be found in the
blockMeshDict file, located in the system directory. The bubble column reactor is defined
as a vertical cylinder with a height of H = 1 m and a diameter of D = 0.2 m (compare
Fig. 1.4). Nevertheless, for symmetry reasons, and to reduce the complexity of the
simulation setup, we will consider this a 2D problem. We will therefore focus on the
mixing behavior in a plane through the reactor middle axis (i.e. a cross-section of the
reactor). The problem domain is therefore defined by eight vertices describing a single
block of 0.2 m x 1.0 m x 0.1 m.

The block is discretized uniformly with 25 cells in the x-direction, 200 cells in
the y-direction and 1 cell in the z-direction. The length assigned to the z-direction is
arbitrary. With only a single cell in that direction, the problem geometry is effectively
reduced to 2D, regardless of the length chosen. Three boundaries are defined: a gas
inlet patch at the bottom, an outlet patch at the top, and two walls at the sides of
the column. The boundaries are defined using the faces keyword, which refers to the
defined vertices. For example, the inlet patch is framed by vertices 1, 5, 4, and 0.

convertToMeters 1;

vertices
(

(0 0 0) // 0
(0.2 0 0) // 1
(0.2 1 0) // 2
(0 1 0) // 3
(0 0 0.1) // 4
(0.2 0 0.1) // 5
(0.2 1 0.1) // 6
(0 1 0.1) // 7

);

blocks
(

hex (0 1 2 3 4 5 6 7) (25 200 1) simpleGrading (1 1 1)
);

defaultPatch
{

type empty;

108 Chapter 1. OpenFOAM

}

boundary
(

inlet
{

type patch;
faces
(

(1 5 4 0)
);

}
outlet
{

type patch;
faces
(

(3 7 6 2)
);

}
walls
{

type wall;
faces
(

(0 4 7 3)
(2 6 5 1)

);
}

);

You can open and modify the blockMeshDict file directly in the terminal or by
running mouspad blockMeshDict & from within the system directory. Once you have
finished editing the blockMeshDict, it is time to generate the mesh. In the terminal
window, navigate to your project main directory and run the following commands:

change to the project main directory
cd ~/bioreactor

build and inspect the mesh
blockMesh
checkMesh
paraFoam

The blockMesh command will generate the mesh and provide some basic mesh
statistics. By running the checkMesh command, you can obtain more detailed infor-
mation on mesh quality parameters. You can inspect the generated mesh visually
by running the paraFoam command, which is an OpenFOAM-specific wrapper for
ParaView. Mmesh example is given in Fig. 1.4.

1.3.2 Physical properties and phases

We will now include the physics in the simulation setup. We will begin with the
definition of two discrete phases, water and air. These are defined in the constan-
t/phaseProperties file, using the phases keyword. The air keyword holds definitions for
the diameterModel, isothermalCoeffs and residualAlpha. The isothermal diameter
model has been selected to describe the behavior of gas bubbles in the system. This

1.3 Simulation of a bubble column reactor 109

model describes the change in gas bubble diameter as a function of pressure. The d0
and p0 parameters set the reference conditions for the gas bubbles, namely a mean
bubble diameter of 3 mm at a reference pressure of 105 Pa. In large bubble column
reactors, this model accounts for the fact that gas bubbles are small at the bottom of
the reactor when they are formed. But as the bubble rises to the surface, its diameter
increases (bubble growth). In contrast, the water keyword defines a constant diameter
model for water droplets with a mean diameter of 0.1 mm.

The blending method sets conditions on the mixing behaviour of the two phases,
so as to instruct the solver when the phases should be considered as dispersed,
mixed or continuous. Under default, a linear blending is assumed, which makes this
model applicable to all phase interactions except drag, which is defined in a separate
dictionary below. The logic for the defined conditions is as follows; the parameter
minFullyContinuousAlpha.air specifies the minimum volume fraction of air to be
considered as a continuous phase. Once this volume fraction is surpassed, air will be
considered as a continuum and the other phase will become the dispersed phase. The
parameter minPartlyContinuousAlpha.air specifies the minimum volume fraction of
the gas phase in a cell volume which can be considered as a dispersed phase. Above
this value, air can be considered mixed with water, but below that threshold, air will
be considered as the dispersed phase (i.e. gas bubbles). The parameters are defined
analogously for water.

A constant surface tension of 0.07 N/m is set for the surfaceTension keyword. This
definition is applied by the solver whenever air is dispersed in water. The drag keyword
defines models for inter-phase momentum transfer. For dispersed phases, either water
in the air, or air in water, the SchillerNaumann model is used. In the absence of
dispersed phases, a segregated drag model is used. The next dictionary defines a
virtualMass model for water dispersed in air, and for air dispersed in water. A virtual
mass is introduced in the momentum equations to describe the required acceleration
force on the mass of the surrounding continuous phase, if a dispersed phase fragment,
such as a bubble or droplet, changes its velocity relative to the surrounding phase.
Here, a constantCoefficient model is used with a virtual mass coefficient (Cvm) equal
to 0.5. Finally, the heatTransfer keyword describes heat transfer between air bubbles
dispersed in water as well as water droplets dispersed in the air. For this purpose, the
RanzMarshall model has been selected.

type basicMultiphaseSystem;

phases (air water);

air
{

type purePhaseModel;
diameterModel isothermal;
isothermalCoeffs
{

d0 3e-3;
p0 1e5;

}
residualAlpha 1e-6;

}

water
{

type purePhaseModel;
diameterModel constant;

110 Chapter 1. OpenFOAM

constantCoeffs
{

d 1e-4;
}
residualAlpha 1e-6;

}

blending
{

default
{

type linear;
minFullyContinuousAlpha.air 0.7;
minPartlyContinuousAlpha.air 0.3;
minFullyContinuousAlpha.water 0.7;
minPartlyContinuousAlpha.water 0.3;

}
drag
{

type linear;
minFullyContinuousAlpha.air 0.7;
minPartlyContinuousAlpha.air 0.5;
minFullyContinuousAlpha.water 0.7;
minPartlyContinuousAlpha.water 0.5;

}
}

surfaceTension
{

air_water
{

type constant;
sigma 0.07;

}
}

drag
{

air_dispersedIn_water
{

type SchillerNaumann;
residualRe 1e-3;

}
water_dispersedIn_air
{

type SchillerNaumann;
residualRe 1e-3;

}
air_segregatedWith_water
{

type segregated;
m 0.5;
n 8;

}
}

virtualMass
{

air_dispersedIn_water
{

type constantCoefficient;

1.3 Simulation of a bubble column reactor 111

Cvm 0.5;
}
water_dispersedIn_air
{

type constantCoefficient;
Cvm 0.5;

}
}

heatTransfer
{

air_dispersedIn_water
{

type RanzMarshall;
residualAlpha 1e-4;

}
water_dispersedIn_air
{

type RanzMarshall;
residualAlpha 1e-4;

}
}

1.3.3 Turbulence model
The turbulence properties for the two phases, water and air, are defined in the constan-
t/momentumTransport.water and constant/momentumTransport.air files, respectively. For
both phases, we will apply the mixtureKEpsilon turbulence model with default model
coefficients.

simulationType RAS;

RAS
{

model mixtureKEpsilon;
turbulence on;
printCoeffs on;

}

1.3.4 Boundary and initial conditions
Initial and boundary conditions are defined in the 0 directory. Use the editor to inspect
the contents of the individual files, representing different fields. For example, U.air
and U.water represent the velocity field of the two phases, while T.air and T.water
corresponds to the temperature field. The files alpha.air and alpha.water refer to the
volume fraction of either phase. In the first step, we will set the desired inlet gas
velocity of v = 0.1 m/s. Open the 0/U.air file and modify according to the problem
specifications to give:

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0.1 0);

boundaryField
{

inlet
{

112 Chapter 1. OpenFOAM

type fixedValue;
value $internalField;

}
outlet
{

type pressureInletOutletVelocity;
phi phi.air;
value $internalField;

}
walls
{

type fixedValue;
value uniform (0 0 0);

}
}

Open the 0/T.air and 0/T.water dictionaries and set the initial temperature to 303.15
K. The modified file for T.air should contain the following:

dimensions [0 0 0 1 0 0 0];

internalField uniform 303.15;

boundaryField
{

walls
{

type zeroGradient;
}
outlet
{

type inletOutlet;
phi phi.air;
inletValue $internalField;
value $internalField;

}
inlet
{

type fixedValue;
value $internalField;

}
frontAndBackPlanes
{

type empty;
}

}

Analogously, T.water dictionary should be defined as follows:

dimensions [0 0 0 1 0 0 0];

internalField uniform 303.15;

boundaryField
{

walls
{

type zeroGradient;
}
outlet

1.3 Simulation of a bubble column reactor 113

{
type inletOutlet;
phi phi.water;
inletValue $internalField;
value $internalField;

}
inlet
{

type fixedValue;
value $internalField;

}
frontAndBackPlanes
{

type empty;
}

}

The reactor column is initially filled with water, up to a height of 0.6 m. This
condition is described in the system/setFieldsDict dictionary. Edit the file to include the
settings below. First, the defaultFieldValues are applied, which fills the entire column
with air. Then, the values specified in the regions entry will overwrite the defaults
where applicable. We define a box with two points (0 0 0) and (0.2 0.6 0.1), and specify
for all cells in that box that the volume shall be filled with water. Following the
modifications, execute the setFields command from your main project directory. The
initial conditions should now take effect.

defaultFieldValues
(

volScalarFieldValue alpha.air 1
volScalarFieldValue alpha.water 0

);

regions
(

boxToCell
{

box (0 0 0) (0.2 0.6 0.1);
fieldValues
(

volScalarFieldValue alpha.air 0
volScalarFieldValue alpha.water 1

);
}

);

1.3.5 Solver settings
As mentioned earlier, the controlDict dictionary in the system directory specifies impor-
tant solver settings, such as the simulation end time, the integration step size, and the
numerical solver to be used. We want to use the multiphaseEulerFoam solver and this
setting should already be set. Open the controlDict file in an editor to set the simulation
endTime to 60 s. This will be sufficient to obtain a general overview of the process.
Make sure that the writeInterval is set to 1 s. This means that the simulation results
are written to the file every second until reaching endTime. Save the file when you are
finished editing to obtain the following:

114 Chapter 1. OpenFOAM

application multiphaseEulerFoam;
startFrom startTime;
startTime 0;
stopAt endTime;
endTime 60;
deltaT 0.005;
writeControl runTime;
writeInterval 1;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable yes;
adjustTimeStep no;
maxCo 0.5;
maxDeltaT 1;

1.3.6 Simulation results
To start the simulation, execute the following commands in a terminal window. De-
pending on the computational power of your system, this process will take several
minutes (perhaps an hour or more) to complete. Already from the run-time of this
rather simplistic modelling case, you can get an idea of why HPC plays an important
role in more detailed (e.g. finer mesh, more cells, 3D geometry) and more complex
(e.g. variable feeding regimes, inclusion of biokinetics) CFD simulations.
change to the project main directory
cd ~/bioreactor

Prepare and execute the simulation
blockMesh
setFields
multiphaseEulerFoam

Visualize the results
ParaFoam

Once the solver has finished, you can visualize the results using ParaFoam. Figures
1.5-1.10 provide an overview of the flow pattern and phase distribution at different time
steps counting from reactor startup. At t = 0 s, the reactor is filled with water up to a
height of 0.6 m (alpha.air = 0; alpha.water = 1) with a continuum of air above (alpha.air
= 1; alpha.water = 0). The velocity field (U.air) indicates zero flow at this point. At t =
2 s, air inflow from the bottom is evident and, as a result of the increased gas holdup,
the gas-liquid interface is moving higher up in the column. At t = 5 s, the flow pattern
becomes more turbulent and the gas holdup keeps increasing. Between t = 10 s and t =
60 s, the air flow develops a more recognizable, stable pattern. Nevertheless, the flow
remains turbulent and there is a channeling effect of the air stream passing through
the reactor. This is marked by zones of relatively high gas velocity.

Using the output written in the main directory, i.e. the time directories created
during simulation, it is possible to perform more accurate data analysis, such as
calculating the local gas holdup and therefore to improve reactor design and operation.
However, any simulation should be implemented with care. Experimental validation
and simulation should go hand in hand to ensure the validity of obtained results.

1.3 Simulation of a bubble column reactor 115

Figure 1.5 Phase distribution and air velocity profiles at t = 0 s.

Figure 1.6 Phase distribution and air velocity profiles obtained at t = 2 s.

116 Chapter 1. OpenFOAM

Figure 1.7 Phase distribution and air velocity profiles obtained at t = 5 s.

Figure 1.8 Phase distribution and air velocity profiles obtained at t = 10 s.

1.3 Simulation of a bubble column reactor 117

Figure 1.9 Phase distribution and air velocity profiles obtained at t = 30 s.

Figure 1.10 Phase distribution and air velocity profiles obtained at t = 60 s.

118 Chapter 1. OpenFOAM

1.4 Simulation of complex fluid dynamic fields

University of Trieste

In the following chapters, we will discuss the applicability of OpenFOAM for
non-standard fluid dynamic cases. Specifically, we will consider two different types of
problems:

◦ Rayleigh-Bénard convection in a cylindrical cell at high Ra numbers

◦ water wave loads on a rectangular floating body.

1.4.1 Rayleigh-Bénard convection in a cylindrical cell
We will first discuss the case of Rayleigh-Bénard (RB) convection. In RB convection,
a thermo-fluid dynamic field is driven by buoyancy effects. The typical case is when
the fluid is confined between two horizontal plates, with the top one at a temperature
lower than the bottom one. The temperature gap causes the variation in the density of
the fluid, with a larger density on the top, and induces vertical motion and mixing.
This is a fundamental mixing process that occurs in the environment, both in the
atmosphere and in water basins.

Typically, this class of problems is studied under the assumption that the density
variations are small compared to the bulk density of the fluid. Furthermore, it is
considered that the advective accelerations are small compared to gravity and that
the vertical scale of motion is small compared to the adiabatic lapse (Boussinesq
approximation). Under the Boussinesq approximation, the momentum and thermal
diffusivity are considered independent of temperature. The conservation equations
assume the following form:

∂ui

∂xi
= 0 (1.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂P

∂xi
+ gα[T − T0]δi3 + ν

∂2ui

∂xj∂xj
(1.2)

∂T
∂t

+ ui
∂T
∂xi

= k∇2T (1.3)

where ui is the velocity component along the xi-direction, P is the kinematic pressure,
g is the gravitational acceleration, α is the cubic expansion coefficient, T and T0 are
respectively the temperature field and the reference temperature and ν is the kinematic
viscosity of the fluid. k = ν/Pr with Pr as the Prandtl number is the thermal diffusivity.
The set of equations takes advantage of the state equation which, under the Boussinesq
approximation, reads as:

∆ρ

ρ0
= −α∆T (1.4)

where ∆T = T − T0 and ∆ρ = ρ− ρ0 where ρ and ρ0 are the density of the fluid at the
temperature T and T0 respectively.

We consider a cylindrical cell of aspect ratio Γ = D/H = 1/2 heated from below
and cooled from above, with adiabatic sidewalls. The physical problem is controlled
by three non-dimensional parameters:

Ra =
α∆TH3g

νk
, Pr =

ν

k
, Γ

1.4 Simulation of complex fluid dynamic fields 119

which are respectively the Rayleigh number, the Prandtl number and the aspect ratio
of the cell.

We consider a turbulent problem and the equations are solved according to the
filtered approach. Specifically, the variables are filtered using a low-pass filter where
the subgrid stress needs closure. This approach, called Large Eddy Simulation, is
able to reproduce directly the large anisotropic and energy-carrying structures of the
flow, whereas, the small, more universal and dissipative scales of turbulence need
parametrization. The subgrid-scale stresses are here parametrized using the WALE
model, whereas, for the SGS buoyancy fluxes we use Prsgs = 1.0

The numerical simulations are carried out for Pr = 0.7∇ · 1 and two different
Rayleigh numbers, 2 · 107 and 2 · 1010 respectively. We use wall-resolving LES, meaning
that we solve the turbulent field together with the thermal and the momentum bound-
ary layers up to the wall, therefore, over the solid surfaces we set no-slip conditions. A
discussion on the resolution requirements is necessary in order to assess the quality
of the results. The results obtained in the case of Ra = 2 · 107 are compared with
those of Verzicco and Camussi [Verzicco and Camussi, 2003] who performed DNS in a
cylindrical cell for Pr= 0.7 and Γ = 1/2. The DNS results are also used to evaluate the
reliability of our simulation in the case of Ra= 2 · 1010.

The large number of dimensional parameters can be reduced by identifying, respec-
tively, a length, a velocity and a temperature scale in the system. The most common
way is to take the height H of the domain as length scale L, and the free-fall velocity
U f , defined as U f ≡

√
gα(T − T0)H as velocity scale. Further, the temperature is made

non-dimensional in the following way:

θ =
T − T0

Thot − Tcold

T0 = Thot

(1.5)

where Thot is the temperature of the lower hotter plate and Tcold is the temperature of
the colder, upper plate. Hence, θ is 0 and 1 at the cold plate and hot plate, respectively.

We have used the open-source CFD software OpenFOAM v2206. OpenFOAM
(Open-source Field Operation And Manipulation) is an object-oriented C ++ frame-
work that can be used to build a variety of computational solvers for problems in
continuum mechanics, with a focus on finite volume discretization. At the core of
these libraries, there is a set of object classes that allow the programmer to manipulate
meshes, geometries, and discretization techniques at a high level of coding. For the
specific problem of RB convection, we shall use two different solvers. The solver
buoyantBoussinesqPisoFoam with a second-order central discretization in space and a
second-order discretization in time. This is an unsteady solver for buoyant, incom-
pressible turbulent flows customized to obtain variables useful for the subsequent
analysis of the data and to enable the LES capabilities of the solver permitting the use
of different turbulence models. The other solver is buoyantBoussinesqRungeKuttaFoam,
an energy-conserving incremental-pressure written for [López Castaño et al., 2019]
and implemented in the new OpenFOAM version for our purposes. It is a third-order
accurate method because the non-solenoidal velocity obtained from the momentum
equation is corrected three times. As demonstrated in our simulation results, the RK4
algorithm together with the WALE model gives better results for Rayleigh-Bénard
convection for both first- and second-order statistics. The superiority of RK4 over PISO
is a consequence of the dissipative features exhibited by the latter. Additionally, the
results for PISO improve with increasing value of the Ra number. The code solves

120 Chapter 1. OpenFOAM

the governing equations using a non-staggered grid mesh, where the pressure and
Cartesian velocity components are defined at the center of the grid whereas the volume
fluxes are defined at the midpoint of their corresponding faces of the cell. The stability
of the overall numerical method is limited by the Courant-Friedrichs-Lewy (CFL)
condition. The local CFL number is defined as:

CFL =
(|u1|

∆x
+
|u2|
∆y

+
|u3|
∆z

)
∆t = (|U1|+ |U2|+ |U3|)

∆t
J−1 (1.6)

where ∆x,∆y,∆z are the grid spacings over the three Cartesian coordinates. In the
above fractional steps, the stability condition requires that the maximum value obtained
from equation (1.6) in the computational domain is:

CFLmax < C̄ ∼ 1. (1.7)

The C̄ is a function of the Reynolds number and it may become smaller than one for a
highly skewed grid mesh. In this application, the time step is not adaptive and the
CFLmax has been set as 0.5. The table 1.1 sums up the number of processors and the
time for each iteration in every case we simulate.

Table 1.1 Number of processors used and computational time for each iteration in all simulations.

Ra n CPU Iteration time

LES7PISO and LES7RK 2 · 107 14 2 s

LES10PISO and LES10RK 2 · 1010 16 1.45 s

The mesh is generated in such a way as to solve the boundary layers. This means
that within the momentum and thermal boundary layers, δu and δθ respectively, it is
necessary to place a minimum number of grid cells. In the bulk region, the mesh size
in the vertical direction is determined as ten times the Kolmogorov scale. According to
[Verzicco and Camussi, 2003] a reasonable estimate of the Kolmogorov scale is:

η

h
≃ π

(Pr2

Ra Nu

)1/4
. (1.8)

The thermal boundary layer is very thin at horizontal plates where the temperature
is assigned as BC. On the other hand, the momentum boundary layer is thin at the
vertical adiabatic walls, where energetic ascendent/descendent flow is present. We
use a nonuniform grid in the radial as well as in the vertical direction, whereas grid
spacing is constant along the circumferential direction. According to [Verzicco and
Camussi, 2003], we can evaluate the thermal boundary layer thickness as smaller than
the momentum one (δθ < δu). The former can be reasonably evaluated according to:

δθ ≃
h

2 Nu
. (1.9)

This estimate for δθ is used to define the number of grid points to be placed in the
boundary layers. In our case, we use a minimum of six cells within the thermal
boundary layer with the first one located around δθ/8 from the wall. In the bulk
region, in order to reduce the computational costs, we use a grid in the vertical
direction ten times the Kolmogorov scale η. This choice is made in accordance with
what was reported in [Pope, 2000]. It was surmized that η underestimates the size

1.4 Simulation of complex fluid dynamic fields 121

of the dissipative motions and Monin [Monin and Yaglom, 1975] concluded that the
separation of the inertial range from the dissipative one occurs at about 10η ([Monin
and Yaglom, 1975], [Verzicco and Camussi, 2003]). For the radial grading, we use the
same cell-to-cell expansion ratio as for the vertical direction, with the first cell near the
sidewall of size δθ/8. However, in the angular direction, we use a uniform grid size
that is 50 times that of the smallest one within the boundary layer.

The resolution of the grid for the whole simulations performed for Ra= 2 · 107 is
listed in the table 1.2. Moreover, it includes the resolution of the grid for the DNS
simulation conducted in [Verzicco and Camussi, 2003]. Using the same approach, in
the table 1.3 we report the grid resolutions for the Ra= 2 · 1010 cases. We indicate with
LES7PISO and LES7PISO1 the results obtained with the PISO algorithm for Ra= 2 · 107

and for Pr= 0.7 and Pr= 1.0, respectively. With LES7PISOF we indicate the Ra= 2 · 107

and Pr= 0.7 case but with a finer grid in the azimuthal direction. LES7RK and LES7RK1
represent the same case but with the RK4 discretization method. Finally, with DNS7
we indicate the DNS results of [Verzicco and Camussi, 2003].

Table 1.2 Physical and computational parameters for Rayleigh number 2 · 107.

Ra Pr η/h 10η δθ δθ/8 Nθ × Nr × Nz

LES7PISO 2 · 107 0.7 0.02160 0.432 0.04473 0.005591 65× 49× 99

LES7PISO1 2 · 107 1.0 0.02160 0.432 0.04473 0.005591 65× 49× 99

LES7PISOF 2 · 107 0.7 0.02160 0.432 0.04473 0.005591 97× 49× 99

LES7RK 2 · 107 0.7 0.02160 0.432 0.04473 0.005591 65× 49× 99

LES7RK1 2 · 107 1.0 0.02160 0.432 0.04473 0.005591 65× 49× 99

DNS7 2 · 107 0.7 0.018 0.0076 0.0446 0.005575 97× 49× 193

For the cases with Ra= 2 · 1010 we indicate with LES10RK the case with Pr= 0.7
and the RK4 as discretization algorithm, and with LES10RK1 the case with Pr= 1.0.
LES10PISO1 indicates the simulation carried out with the PISO algorithm and Pr= 1.0
and DNS10 the results of [Verzicco and Camussi, 2003].

Table 1.3 Physical and computational parameters for Rayleigh number 2 · 1010.

Ra Pr η/h 10η δθ δθ/8 Nθ × Nr × Nz

LES10PISO1 2 · 1010 1.0 0.002253 0.04506 0.00529 0.000661 96× 75× 188

LES10RK 2 · 1010 0.7 0.002253 0.04506 0.00529 0.000661 96× 75× 188

LES10RK1 2 · 1010 1.0 0.002253 0.04506 0.00529 0.000661 96× 75× 188

DNS10 2 · 1010 0.7 0.0018 0.0048 0.0013 0.0001625 129× 97× 385

Verzicco and Camussi [Verzicco and Camussi, 2003] provide a criterion to evaluate
the duration of each simulation since analogous statistics for turbulent quantities had
to be computed. This duration is defined in terms of large-eddy-turnover times TL
assuming a fluid particle to revolve inside the cell at a speed of the order of the free-fall
velocity along an elliptic path [Verzicco and Camussi, 2003]. This TL time increases
with the Ra number and only after a large number of large-eddy-turnover times all
the statistical quantities averaged can be considered converged. If U =

√
g α ∆T h we

can estimate TL ≃ 2h/U and for Ra = 2 · 107 the criterion gives Ttot = 100 TL, while for
Ra = 2 · 1010 gives Ttot = 165 TL. For Ra = 2 · 1012, since it is not reported in [Verzicco

122 Chapter 1. OpenFOAM

and Camussi, 2003], we consider the same Ttot reported for the range 2 · 1010 − 2 · 1011,
i.e. Ttot = 275 TL. This refers to the calculation of the time averages of the variables
after bringing the field to a stage that can be defined as fully developed. All the
references for the case are reported in tables 1.4 and 1.5 for Ra= 2 · 107 and Ra= 2 · 1010

respectively, where Tstab indicates the range of time we use to bring the flow structure
in a fully developed state.

Table 1.4 Duration of simulation as a function of large-eddy-turnover time for Ra= 2 · 107.

Ra U TL 100 · TL Ttot Tstab

LES7PISO 2 · 107
√

2 2
√

2 282 280 120

LES7PISO1 2 · 107
√

2 2
√

2 282 280 145

LES7PISOF 2 · 107
√

2 2
√

2 282 325 354

LES7RK 2 · 107
√

2 2
√

2 282 395 200

LES7RK1 2 · 107
√

2 2
√

2 282 390 200

Table 1.5 Duration of simulation as a function of large-eddy-turnover time for Ra= 2 · 1010.

Ra U TL 165 · TL Ttot Tstab

LES10PISO1 2 · 1010
√

2 2
√

2 467 490 163

LES10RK 2 · 1010
√

2 2
√

2 467 490 410

LES10RK1 2 · 1010
√

2 2
√

2 467 490 410

The results obtained for Ra = 2 · 107 and Pr= 0.7 using the PISO and RK4 solvers
are reported below and compared to those of [Verzicco and Camussi, 2003]. It is also
possible to compare the statistics obtained with PISO and RK4 algorithms. First of all,
we turn our attention to the calculation of the Nusselt number. Two definitions were
used to calculate the Nusselt number, the first named Nuplate and defined by equation
(1.10), the second named Nuint and defined by the equation (1.11). The former is the
Nusselt number obtained from the gradient of the mean temperature evaluated on the
bottom and top plates:

Nuplate =
∂⟨θ⟩t,s

∂z

∣∣∣∣∣
z=0,1

(1.10)

where ⟨θ⟩t,s is the average over time and in the horizontal plane at z = 0 and z = 1,
which correspond to the lower and upper plate. This value defines an indirect way to
check the grid resolution in the thermal boundary layer. Nuint is defined as:

Nuint = 1 +
√

Ra Pr ⟨wθ⟩t,V (1.11)

where ⟨wθ⟩t,V is the mean over time and the whole domain of the product between the
vertical component of velocity and the temperature. Nuint can be used as an indicator
of the grid resolution in the bulk region of the domain to determine whether the
dynamic of the mean flow is represented. These two values are evaluated at every time
step and then averaged in time. Simulation results are compared to those of [Verzicco
and Camussi, 2003] (DNS7) in the table 1.6.

The values shown in table 1.6 require additional explanation. First of all, we have
to point out that the error for the Nu has been calculated as the third-order standard

1.4 Simulation of complex fluid dynamic fields 123

Table 1.6 Value of Nuint for three considered simulations.

Nuint

LES7PISO 20.11 ± 0.66

LES7RK 22.57 ± 1.02

DNS7 20.56 ± 1.48

deviation on a discrete set of data generated every five seconds of the simulation and
the value of Nu is averaged in time. The Nuint evaluated using both the PISO and RK4
algorithms is comparable with the results presented in [Verzicco and Camussi, 2003].
In particular, the LES7RK value is higher than the LES7PISO one.

The mean flow structure can be partially represented by showing the vertical
profiles of the mean vertical velocity and temperature at the axis of the cylindrical
cell. Figure 1.11 shows the mean vertical velocity component at the axis (r = 0) of the
bottom half of the domain. In all the figures the vertical distance from the bottom
plate y is normalized with the height of the cell h. We can see that for Ra = 2 · 107 the
vertical velocity at the axis is negative for y/h ≤ 0.5 and positive for y/h > 0.5. This
is a clear sign of the presence of two counter-rotating toroidal rings attached to the
horizontal plates.

-0.
15

-0.
12

-0.
09

-0.
06

-0.
03 0

0.0
3

0.0
6

0.0
9

0.1
2

0.1
5

huzi

0

0.1

0.2

0.3

0.4

0.5

y
=h

DNS7
LES7PISO
LES7RK

Figure 1.11 Mean vertical profiles of the vertical velocity ⟨uz⟩ at the axis of the cell. The dashed line
represents the DNS results. The solid line represents LES7RK results and the dotted line LES7PISO
results.

From figure 1.11 we can see how within the boundary layer (δθ ∼ 0.049) both RK4
and PISO algorithms give consistent results with the DNS. The main differences can
be viewed in the bulk region. The LES7RK results are nearly identical to the DNS with
a small overestimation of the peak value at y/h ∼ 0.12, while LES7PISO provides a
mean velocity profile that does not sufficiently represent the physics of the problem.

For the cylindrical domain, the dynamic in the central region of the cell can be
described with a large-scale circulation (LSC) where the fluid at the hot plate rises
near the lateral wall and descends at the center of the cell. This motion of the fluid can
be viewed in figure 1.12 where the streamlines of the vertical velocity uz in the entire
domain are shown. Red lines indicate the streamlines of the positive component of uz

124 Chapter 1. OpenFOAM

that from the hot bottom plate rise in the cell center. Inside the cylinder we can see the
descending component of the vertical velocity in blue.

Figure 1.12 Streamlines representing the instantaneous vertical velocity component in the entire volume
of the cylinder in the case of Ra= 2 · 107.

Near the upper and bottom plate the flow is dominated by axisymmetric torodial
rings. These particular structures are displayed in figure 1.13 where the streamlines of
the vertical velocity instantaneous field are plotted in the hot plate.

Figure 1.13 Streamlines representing the instantaneous vertical velocity component in the hot plate at the
bottom of the cylinder in the case of Ra= 2 · 107.

From the visualization of the instantaneous field at a specific simulation time,
no information about the dynamics of the flow can be deduced. However, we can
assess whether our results can describe the flow configuration shown in figures
1.12 and 1.13. For this purpose, we compute the local friction coefficients as the
normalized wall-normal derivative of the tangential velocity. The normalization factor
is 1/Re =

√
Pr/Ra. In particular, in figure 1.14 the radial profile is obtained by plotting

the tangential velocity as the projection of the velocity vector onto the plane parallel to
the plate. The LES4RK profile is able to represent the DNS one in particular near the
sidewall of the domain. The maximum value is located at the same radius, while in
the LES1PISO case is overestimated and occurs at a greater radius value. Near the axis
of the cylindrical cell (r/d = 0) the values of (1/Re)(δut/δn) in both simulations have
a trend that forms that of DNS and this may be due to insufficient refinement of the
grid near the center.

For the vertical profile, the tangential velocity is the projection of the velocity
vector onto the plane parallel to the lateral sidewall and it is averaged in time and the
azimuthal direction. Figure 1.15 shows that our simulations are able to reproduce the

1.4 Simulation of complex fluid dynamic fields 125

0
0.0

25 0.0
5

0.0
75 0.1

0.1
25 0.1

5
0.1

75 0.2
0.2

25 0.2
5

r=d

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(1
=R

e)
(/

u
t=
/
n
)

#10!3

DNS7
LES7RK
LES7PISO

Figure 1.14 Radial profiles at the horizontal plate of the mean (the profiles are averaged in time and
between the lower and upper plate) wall-normalized velocity gradients for Ra = 2 · 107. The dashed line
stands for the DNS results, the solid line for our LES7RK results and the dotted one for the LES7PISO
results.

vertical profile of the DNS. The maximum value is a little bit lower and closer to the
top and bottom plates for both LES7RK and LES7PISO cases. However, we can observe
that in the LES7RK case the profile of (1/Re)(δut/δn) is not symmetrical in the upper
half of the domain compared to the lower.

0 0.5 1 1.5 2 2.5 3

(1=Re)(/ut=/n) #10!3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
=
h

DNS7
LES7PISO
LES7RK

Figure 1.15 Vertical profiles at the sidewall of the mean (the profile is averaged in time and the azimuthal
direction) wall-normalized velocity gradients for Ra = 2 · 107. The dashed line stands for the DNS results,
the solid line for our LES7RK results and the dotted one for the LES7PISO results.

The mean temperature profiles clearly show that the temperature remains approxi-
mately constant within the bulk region while the temperature gradients are effective
only within the thermal boundary layer. As was previously outlined, the temperature
gradient is used for the calculation of Nuplate. Consequently, the lower the slope of the
curve, the higher the temperature gradient and the Nuplate will be. A close-up view of
the ⟨θ⟩ profiles near the upper plate is shown in figure 1.16. The mean temperature for
LES7RK and LES7PISO are compared with the DNS7 results of [Verzicco and Camussi,

126 Chapter 1. OpenFOAM

2003]. The data shows there is a good agreement for LES7RK with the higher error of
5% at y/h = 0.99. In the LES7PISO case, the results are less accurate.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

h3i

0.97

0.975

0.98

0.985

0.99

0.995

1

y
=h

DNS7
LES7RK
LES7PISO

Figure 1.16 Mean vertical profiles of the temperature ⟨θ⟩ at the axis of the cell plotted in the upper half of
the domain. The dashed line stands for the DNS results, the solid line for our LES7RK results and the
dotted one for the LES7PISO results.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

h3rmsi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
=h

DNS7
LES7RK
LES7PISO

Figure 1.17 rms vertical profile of temperature ⟨θrms⟩ at the axis of the cell. The dashed line stands for the
DNS results, the solid line for our LES7RK results and the dotted one for the LES7PISO results.

The dynamics of the mean flow reflect on the dynamics of the boundary layers
just as the descending plume at the center of the cell shrinks the boundary layer. This
induces a boundary layer that sets monotonically while spreading over the plates
across the cross-section aligned with the mean current. In the following figures, the
rms vertical profiles of vertical velocity and temperature are reported. In particular, in
figure (1.17) the rms temperature profile at the axis of the cell is presented.

The vertical profile of the temperature fluctuations have peaks in the regions close
to the wall and an almost constant value in the bulk of the flow. Both LES cases
underestimate the value in the central region but give nearly equal peaks near the
plates. In the center of the domain, the differences between LES7RK and LES7PISO

1.4 Simulation of complex fluid dynamic fields 127

are more pronounced, with the former always more accurate than the latter. To check
the estimation of the thermal boundary layer thickness obtained with equation (1.9)
we can compare it with the distance of the peak rms from the wall, as shown in figure
1.18.

0 0.02 0.04 0.06 0.08 0.1 0.12

h3rmsi

0

0.005

0.01

0.015

0.02

0.025

y
=h

DNS7
LES7RK
LES7PISO

Figure 1.18 rms vertical profile of temperature ⟨θrms⟩ at the axis of the cell near the lower plate. The
dashed line stands for the DNS results, the solid line for our LES7RK results and the dotted one for the
LES7PISO results.

The profile obtained near the wall using LES7RK is comparable with the DNS
trendline but overestimates the peak value. On the other hand, with the PISO results
the same peak value is obtained but it occurs at a lower domain height. As we move
away from the wall, the DNS results are largely underestimated. The same general
considerations can be made for the rms velocity profile ⟨urms⟩. It has peaks near the
walls and a lower, but not so constant as ⟨θrms⟩, value in the bulk region. Given that
the finding of the first- and second-order statistics already discussed for Ra= 2 · 107,
we can conclude that with RK4 we can obtain results that greatly reproduce those of
[Verzicco and Camussi, 2003]. For this reason, the analysis of mean fields and their
fluctuations for higher Ra numbers will be carried out with the RK4 algorithm for the
discretization of the governing Navier-Stokes equations.

The simulations were carried out using 14 processors and, as expected, the com-
putational cost for the two solvers is different. With the buoyantBoussinesqPisoFoam
solver the time required for each time step, the latter fixed at 0.001 s, is 1.45 seconds.
It means that to perform a complete case with Ra= 2 · 107 for a total of 595 seconds,
with the PISO solver the total simulation time is nearly 240 hours. However, using the
buoyantBoussinesqRungeKuttaFoam solver with the same time step and the same total
time of simulation, the time required for each step is 1.83 seconds. In this case, we
need 302 hours to get a complete simulation. Multiplying by the number of processors
used, for the PISO solver we have 3360 total hours while for the RK4 solver are about
4228 hours. The above data and data from all other simulations that we performed are
summarized in table 1.7.

128 Chapter 1. OpenFOAM

Table 1.7 Computational costs of simulations for Ra= 2 · 107 and for Ra= 2 · 1010. With cpuproc we indicate
the number of processors used, ∆tsim is the time step of the simulations, Tsim

tot is the total time of the
simulations, ∆titer is the time required for each time step, Treal

tot is the time required to get the complete
simulation and cpu time total is the product of Treal

tot and the number of processors used.

cpuproc ∆tsim[s] Tsim
tot [s] ∆titer[s] Treal

tot [h] cpu time total [h]

LES7PISO 14 0.001 595 1.45 240 3360

LES7PISO1 14 0.001 595 1.45 240 3360

LES7RK 14 0.001 595 1.83 302 4228

LES7RK1 14 0.001 595 1.83 302 4228

LES10RK 16 0.001 900 2.00 500 8000

LES10RK1 16 0.001 900 2.00 500 8000

1.4.2 Wave loads over fixed rectangular pontoon
OpenFOAM’s performance will be assessed on a test case that simulates water waves
and the interaction between waves and fixed structures. The package OlaFlow [Higuera,
2017] included in OpenFOAM v2206 is utilised. In brief, OlaFlow solves the incom-
pressible Navier-Stokes equations (hereafter rewritten for sake of clarity):

∂ui

∂xi
= 0 (1.12)

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p
∂xj

+ ν
∂2ui

∂xj∂xj
+ gi . (1.13)

The frame of reference has x (or x1) set along the direction of wave propagation, y
(or x2) in the cross-stream direction, and x3 (or z) in the vertical upward direction. The
gravitational acceleration vector is gi ≡ (0,0,−g). The set of equations is solved in the
liquid phase and the air phase, and the VOF method is used to detect the interface,
using a parameter α governed by the equation:

∂α

∂t
+

1
θ

∂⟨ui⟩α
∂xi

+
1
θ

∂⟨uci⟩α(1− α)

∂xi
= 0 . (1.14)

The parameter α represents the fraction of liquid contained within a cell. α = 1
if the cell is full of liquid and, conversely, α = 0 for gas cells. uci is the difference
between fluid velocity in the liquid phase and fluid velocity in the gas phase. The
equations are solved using the PIMPLE algorithm. As boundary conditions, a wave
generator is placed on the left side of the domain (x = 0), where the values of velocity
and VOF function (field alpha) are set according to wave theories. On the bottom wall
no-slip velocity is considered, at the right boundary of the domain wave absorption
is used. In order to cancel out the reflected waves, the boundary must generate a
velocity equal to the incident one but in the opposite direction. The later walls are
empty, a condition used in OpenFOAM 2D simulations. The top boundary is set to
pressureInletOutletVelocity for the velocity, which allows exit from the domain, and
totalPressure for the pressure, which allows uniform pressure on the patch. At the
interface of two different fluids the equation (1.14) keeps the surface compressed.
The solver allows the generation of large amplitude waves, which, depending on the
period, the height and the depth of the liquid phase, are described by various theories
(Cnoidal, StokesI, StokesII, etc.).

1.4 Simulation of complex fluid dynamic fields 129

The mesh, as reported by Zhang et al. [Zhang et al., 2018], must be sufficiently
refined in the region of the free surface, to allow a correct representation of alpha.water.
The mesh must be refined according to the height of the wave and the length of the
wave. For the vertical dimension of the mesh, the cells must be at most 1/60 of the
wave height, while for the horizontal dimension, they must be 1/100 of the wave length.
As a first step, the accuracy of the wave generator module (OlaFlow) was verified by
generating a second-order Stokes wave with a height of 0.2 m and a period of 3 s in a
domain with a depth of 4 m.

Table 1.8 Wave characteristics and mesh parameters for the initial test cases.

Case Wave characteristics Cell dimension Mesh

Hi [mm] Li [m] z [mm] x [m] z [m] n cells n points

1 0.75 19.7 12.5 0.1970 0.0125 717192 1438966

2 0.5 14.66 8.33 0.1466 8.3×10−3 784192 1573166

3 0.4 12.26 6.67 0.1225 6.67×10−3 877992 1761054

4 0.3 9.63 5 0.0963 5×10−3 923354 1854564

5 0.2 6.69 3.33 0.0669 3.33×10−3 945564 1934234

The time step was adjustable in reported simulations in order to maintain the
Courant number Co < 0.5. The maximum allowed time step was 0.025 s. The wave
was recorded in post-processing by means of a sample to identify the time record of
the free surface; successively, data analysis was carried out using a Matlab script. The
verification, carried out by overlapping an analytical curve of the second-order Stokes
wave, yielded good results, with approximately 0.4% deviation at some points. Figure
1.19 depicts the results. The verification process indicated the need to analyse the fields
at least every 0.02 s to avoid missing wave peaks.

Figure 1.19 Comparison of the analytical and the generated wave. The solid blue line represents the
analytical wave and the dashed orange the recorded wave.

130 Chapter 1. OpenFOAM

Table 1.9 Computational times for considered test cases. ∆tlast is the last time step of the simulation as
the simulations are time step adjustable. Tsim

tot is the simulation time. ∆titer is the time required for each
time step. Treal

tot is total computational time. Ttotal is cummulative CPU time.

Case n CPU ∆tlast [s] Tsim
tot [s] ∆titer [s] Treal

tot [h] Ttotal [h]

1 8 0.0024 40 1 3.6 28.8

2 8 0.0053 40 1 4.2 33.6

3 8 0.0017 40 1 4.72 37.76

4 8 0.0062 40 1 5.28 42.24

5 8 0.0034 40 1 6.87 54.96

Next, we considered the case of a box-shaped wave breaker whose geometry and
position is given in figure 1.20. We considered 5 different waves (see table 1.10).

Table 1.10 Waves generated in the simulations.

Case H [m] T [s]

WS 01 0.75 3.76

WS 02 0.5 3.13

WS 03 0.4 2.83

WS 04 0.3 2.49

WS 05 0.2 2.07

Initially, the simulations were carried out in laminar mode. Successively they were
switched to the RANS mode with a κ − ϵ turbulence model to analyse the energy
dissipation during the interaction between water and structure. The domain was 60
m long and 7 m high with the free surface set at 2 m. The wave generation inlet was
set at the left side and the wave absorption outlet at the right side. The top of the
boundary was set as the atmosphere, while the bottom is a wall as is the structure of
the breakwaters.

Figure 1.20 Rectangular fixed breakwater.

The performance of floating breakwaters can be studied with the transmission
coefficient, which is the ratio between the height of the transmitted wave and the height
of the incident wave. To analyze the transmitted wave, data from the free surface were
recorded at L f s = 10 m downstream of the wave breaker for all five simulations with
different waves. The transmission coefficients were compared with [Zhang et al., 2018]
as shown in figure 1.21, wherein the x-axis there is the ratio between the length of the

1.4 Simulation of complex fluid dynamic fields 131

breakwater and the length of the wave BL and in the y-axis the transmission coefficient.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,1 0,2 0,3 0,4 0,5

Ct

B/L

Experimental results

Zhang CFD

Reproduction CFD

Figure 1.21 Comparison of the transimission coefficients between the CFD and the [Zhang et al., 2018]
results.

Additionally, the transmission coefficients for a fixed π shaped breakwater based
on the data for wave generation in table 1.10 were analysed. This simulation is done
to confirm that by increasing the submergence of the structure, the transmission
coefficient changes. The shape of the breakwater is shown in figure 1.22. A wave
breaking over the structure is shown in figure 1.23.

Figure 1.22 π shape breakwaters.

Figure 1.23 Breakwaters with wave load.

The domain in conducted simulations was 70 m long and 9 m high with the free
surface set at 4.5 m. Similarly, the wave generation inlet is set at the left side and

132 Chapter 1. OpenFOAM

the wave absorption outlet at the right side. The top of the boundary is set as the
atmosphere, while the bottom is a wall as is the structure of the breakwaters. The
problem is two dimensional. The results indicated an improvement in the transmission
coefficient and were compared to the empirical formulas from [Macagno, 1953] and
[Ruol et al., 2013] that are designed respectively for box-shaped floating breakwaters
and π floating breakwaters. The coefficients calculated from the simulation are higher
than those derived from the analytical formulae. That’s because the structure is fixed
in space and not floating on the water, hence energy dissipation is higher.

Subsequently, a comparison between a cubic breakwater and the π-shaped breakwa-
ter. The results showed that due to the irregular shape of the π-shaped structure, more
energy was dissipated as the wave passed through. Figure 1.24 shows the differences
in the calculated transmission coefficients.

Figure 1.24 Transmission coefficient Ct as a function of incident wave height Hi.

(a) (b)

(c) (d)

Figure 1.25 Streamlines (a) and velocity magnitude (b) under the π-shaped structure. Streamlines (c) and
velocity magnitude (d) under the cubic-shaped structure.

For the same incident wave, the transmitted waves for the π-shaped breakwater are

1.4 Simulation of complex fluid dynamic fields 133

lower than for the cubic wave breaker. In figure 1.25 streamlines and velocity contours
are shown. A large vortex can be observed under the π-shaped structure.

Finally, we will compare the performance of two identical breakwaters geometries.
The only difference is in the fact that the new simulation allows the floating breakwater
to move vertically (z-direction) while maintaining the waterline similar to the case
of the fixed breakwater in space. As far as the floating breaker is concerned, first,
the damping of the structure was calculated. To do this, the cube was placed in
an unbalanced position, namely, the water surface was set 10 cm above the body’s
hydro-static balance. The phenomenon is shown in figure 1.26. The wave-structure
iterations were then analysed, comparing the displacements recorded on the structure
and the analytically calculated displacements. In addition, the oscillation frequencies
of the wave-structure system were recorded and subsequently compared with the
analytical formulae. The results are shown in figure 1.27.

Figure 1.26 Logarithmic trend of the damping simulation.

20 25 30 35 40
-0.3

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

20 25 30 35 40
-0.3

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

Figure 1.27 Displacement of the breakwater during wave-structure interaction.

The wave transmission coefficient was also calculated for the floating wave breaker,
recording the free surface 10 m after the structure. The results are shown in Figure
1.28.

134 Chapter 1. OpenFOAM

Figure 1.28 Comparison of the transmission coefficients between the floating breakwater and the two
fixed structures with the shape of π and cube.

Introduction
Numerical model
Performance comparison

2. Altair CFD

136 Chapter 2. Altair CFD

2.1 Introduction

University of Rijeka

The improvement in computational performance, particularly related to graphic
processing units, has led to the increased popularity of numerical methods such as the
Lattice Boltzmann Method (LBM) [Kruger et al., 2017]. In this chapter, we will compare
the conventional macroscopic approach based on FEM with the LBM mesoscopic
approach, which considers fluid flow at a smaller scale. We will assess the FEM
approach using Altair AcuSolve software and investigate the LBM approach using
Altair’s UltraFluidX GPGPU-based solver. LBM, in comparison to FEM which uses
elements, is based on lattices, where the statistical Boltzmann equation is analyzed
through the collision and propagation of particles between lattices.

The FEM-based solver was deployed on the BURA supercomputer cluster, while
LBM-based solver was assessed on Nvidia RTX A6000 and Quadro M6000 powered
systems. For comparison purposes, we use the external fluid flow problem around
the NACA0012 airfoil. The pressure coefficient around the NACA0012 airfoil for a
medium Reynolds number of around 190,000 is used to validate these approaches
(figure 2.1).

Figure 2.1 Pressure distribution over NACA0012 airfoil for 8° angle of attack for wind tunnel experiment.
Minimal and maximal values are highlighted with dark red and dark blue star.

Static pressures were obtained from the twenty tapping positions on the cross-
section of the NACA0012 airfoil used in the wind tunnel experiment. Detailed analysis
of LBM regarding wind tunnel experiment results is elaborated in a research paper
by Rak et al. [2023]. These pressure values were then used to calculate the coefficient
pressure around the airfoil, which will serve as the basis for comparing the LBM and
FEM approaches.

2.2 Numerical model

The reported case considers the NACA0012 airfoil with an 8° angle of attack (AoA) in
a test section with a width of 300mm, height of 300mm, and length of 600mm. The
geometry is defined based on the conducted experiment. Both the LBM and FEM
approaches use LES with a sub-grid scale Smagorinsky model and share the same
inputs, including a 20 m/s inlet velocity, the same air properties, and the same run
time simulation. The last 10% of the obtained pressure coefficient values for both
cases are time-averaged and compared. Once the coefficient pressure values have been

2.2 Numerical model 137

compared and deemed satisfactory, we will analyze the hardware usage in more detail
to gain insights into the performance of the FEM and LBM approaches on the different
architectures.

With regard to preprocessing, the LBM approach is more intuitive and easier to
deploy due to its use of a lattice layout. The domain can be defined with different
amounts of lattices using boundary boxes and body offsets. To determine the optimal
lattice distribution, several meshes with different refinement levels were analyzed. The
finest mesh, containing around 17 million voxels, was selected based on its correlation
with the experimental results. The Root-Mean-Square-Error (RMSE) was found to be
lower than 0.15 for this mesh.

In contrast to LBM, the conventional CFD approach based on FEM required a
quality mesh. In this instance, preprocessing, i.e. building a numerical grid, can
be a time-consuming process. We initially performed a RANS simulation with the
k-ω SST model. Subsequently, a fine mesh with around 8.5 million elements was
chosen to ensure mesh relevance and minimize numerical errors. The inlet, walls, and
outlet boundary conditions were the same for both LBM and FEM simulations. By
analyzing the results and visualizing the flow with contour plots (figures 2.2 and 2.3),
we can draw conclusions about the quality of the simulations. Following the validation
process, we can thus proceed with hardware and performance comparisons.

Figure 2.2 Contour plot of the velocity field for the NACA0012 airfoil.

Figure 2.2 shows a zoomed-in velocity contour plot, which reveals a velocity
drop near the trailing edge of the airfoil (back part of the airfoil), indicating the
presence of the separation. The stagnation point at the leading edge (front part of the
airfoil), where the velocity is zero and the pressure is maximal, can be identified easily.
Figure 2.3 displays a zoomed-in pressure plot, which illustrates the pressure difference
between the lower and upper surface of the airfoil, generating the lift force. Overall,
by examining plots we can conclude that the pressure and velocity fields around the
airfoil appear reasonable.

Figure 2.3 Contour plot of the pressure field for the NACA0012 airfoil.

138 Chapter 2. Altair CFD

2.3 Performance comparison

The LBM simulation was performed using GPUs. Initially, we used an Nvidia Quadro
M6000 device with 12 GB memory, which took a little less than a day to produce
the results. Significant improvements were observed by switching to the Nvidia
RTX A6000 device with 48 GB memory. In fact, to solve the identical problem, the
newer architecture reduced the computational time by threefold compared to the
Nvidia Quadro M6000 processor. Furthermore, we achieved even better results by
utilizing two Nvidia RTX A6000 devices connected via the NVLink bridge. This
configuration not only added more resources but also enabled faster data transfer and
code control between GPUs through the NVLink bridge, leading to further reductions
in computational time.

It is interesting to investigate the financial aspect of the hardware used to conduct
analyses. In this particular case, we can refer to MSRP prices as well as consider current
prices. According to the current GPU market, the Nvidia Quadro M6000 costs around
$500, while the Nvidia RTX A6000 costs around $4000. MSRP prices for noted devices
were $5000 and $4649 respectively. Evidently, faster computational times require more
investment in hardware architecture, however, if assessed by the MSRP at the time
of introduction, performance has over the years increased with the price remaining
approximately the same, or even slightly lower. The correlation between prices and
performance is illustrated in Figure 2.4.

Figure 2.4 Comparison of GPUs based on their market value and computational time. The orange line
represents the computational time, while bars show the price of GPUs in US dollars.

Generational improvement in GPU performance in the last five years (the Quadro
M6000 was released in 2015 and the RTX A6000 in 2020) is noticeable. If we are to
consider current market prices and performance, we are paying eight times more
for roughly four times the performance. However, if we are to consider MSRP, this
performance can actually be obtained at a slightly lower price. It is also worth noting
that buying dated hardware such as M6000 is not a worthwhile investment and

2.3 Performance comparison 139

alternatives from Nvidia or AMD should be considered. Additionally, the use of two
RTX A6000 GPUs coupled with an NVLink bridge can result in an almost twofold
reduction in simulation elapsed time.

As noted, the FEM-based solver was assessed on the BURA supercomputer, which
is equipped with Intel Xeon E5-2690 v3 processors. Each processor has a 30 MB cache
and 12 physical cores. There are two processors in a node and each node has 64
GB DDR4 2133MHz memory. Nodes are connected to shared petabyte storage with
the Lustre file system. For conducted runs, up to 20 physical cores per node were
allocated and hyper-threading was disabled. Set simulation time is one-tenth of the
total time used for LBM simulations hence it is reasonable to assume that a realistic
computational time would be approximately ten times longer. This choice was done to
compute results in a reasonable time frame.

In terms of cost, each processor currently has a price of approximately $200. The
MSRP for a single E5-2690 v3 was $2090. This totals to $400 and $4180 per pair of CPUs
per node, respectively. The relationship between price and performance is illustrated
in Figure 2.5.

Figure 2.5 Price and computational time as a function of the number of processors. The light orange line
represents the computational time, while the sky blue bars show the price of CPUs in US dollars.

The price bar is continuously increasing with the increase in the number of CPUs.
However, the computational time did not decrease linearly. This can be attributed to
multiple reasons, including inter and intra-nodal communication, storage latency as
well as general solver-related limitations. The most significant decrease in performance
is observed when using more than ten nodes. Therefore, for this problem, adding more
than twelve nodes would only marginally improve the speedup while significantly
increasing the budget.

We have additionally compared CPU and GPU effectiveness in terms of hardware
cost and computational time. This data is given in figure 2.6. It’s worth noting that the
CPU computational time for each simulation has been multiplied by ten to approximate
the final elapsed time for the full simulation. When comparing the two approaches,
we can conclude that with 24 CPUs, the simulation is completed in approximately one
week, while with the Quadro M6000 GPU, it can be completed in just one day. From a

140 Chapter 2. Altair CFD

financial effectiveness standpoint, the FEM-based approach requires CPU investment
of roughly $4180 according to MSRP, while the Quadro M6000 GPU costs $5000. If
we take into account current pricing, the gap is even narrower. To summarize, the
LBM-based GPU approach yields results approximately an order of a magnitude faster
while being cheaper. This is without taking into account current hardware options (i.e.
RTX A6000), though to conduct a fair comparison, equivalent current-generation CPUs
should be considered.

Figure 2.6 Comparative assessment of market value and computational time for considered CPUs and
GPUs.

Despite the significant advantage of using LBM on GPUs, there are still scenarios
where FEM-based and FVM-based solvers might be preferred. LBM on GPUs can
produce results much more quickly and has a shorter preprocessing time, but it may
not always be the best approach for solving different types of problems. On the other
hand, conventional methods are more robust and have been thoroughly researched.
Nevertheless, in this specific case, LBM has proven to be a superior approach. Likewise,
it will be interesting to see how the future growth of GPUs will impact the direction of
CFD approaches for solving different types of problems.

CFD code MGLET
Applications
Performance optimisations

3. MGLET

142 Chapter 3. MGLET

3.1 CFD code MGLET

Technical University of Munich

MGLET is a (soon-to-be) open-source CFD software that is capable of performing
Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of turbulent flows
in arbitrary-shaped domains, which can be optionally coupled with transport of
multiple scalar quantities. The code employs a finite-volume method to solve the
incompressible Navier-Stokes equations for the primitive variables. Those variables are
stored in a Cartesian grid with a staggered arrangement and discretised in space by a
second-order central scheme. The time integration is done by an explicit third-order
low-storage Runge-Kutta scheme [Williamson, 1980]. The pressure computation is
decoupled from the velocity computation by Chorin’s projection method [Chorin,
1968]. Accordingly, a Poisson equation is to be solved for the pressure for each Runge-
Kutta sub-step. Arbitrarily curved and geometrically complex surfaces are handled
by immersed boundary methods [Peller et al., 2006, Peller, 2010]. A conventional
domain decomposition is adopted for parallelisation, which is combined with a local
grid refinement strategy. The local refinement is achieved by adding grid boxes with
finer resolutions in an octree-like, hierarchical and overlapping manner, where the
degree of grid refinement is determined by the grid levels [Manhart, 2004]. This leads
to two distinct types of grid-wise communications, namely: intra-level communication
between the boundaries of neighbouring grids, and inter-level boundary and volume
communication between adjacent grid levels.

The code is written in Fortran, and the communication between different processes
is implemented via Message Passing Interface (MPI). An efficient parallel I/O strategy
is implemented based on HDF5 [The HDF Group, 1997-2020]. The pressure compu-
tation in the multigrid framework is supported by the hierarchical grid arrangement,
and is accomplished by a red-black Gauss-Seidel smoother with over-relaxation (SOR)
being applied at all fine grid levels. In contrast, a Strongly Implicit Procedure (SIP)
solver is employed at the coarsest level [Stone, 1968]. The usage of two different solvers
in the multigrid cycle is justified by the fact that the Gauss-Seidel smoother is effective
in eliminating high-frequency error components emerging from the refinement process
of the multigrid algorithm, whilst the SIP solver is able to efficiently remove the broad
range of frequencies that is present only in the residual at the coarsest level.

3.2 Applications

The code has been developed, maintained and improved by a community of developers
and users belonging to several research groups. The group of Prof. H. Andersson
and B. Pettersen (NTNU Trondheim, Norway) used the code is primarily for flows
around bluff bodies. The group at DLR in Oberpfaffenhofen (Dr. Frak Holzäpfel) use
the code for aircraft wake vortices. At the KIT Institute of Meteorology and Climate
Research Atmospheric Environmental Research (IMK-IFU, Campus Alpin, Garmisch-
Partenkirchen) MGLET is used to assess the sensitivity of ultrasonic flow measurement
devices to flow oscillations. The company KMT uses a commercialised version to assess
aeroacoustic noise in car passenger compartments. Some recent examples comprise
turbulent flow around bluff bodies [Schanderl and Manhart, 2016, Schanderl et al.,
2017a,b, Strandenes et al., 2017], aircraft wake vortices [Misaka et al., 2012, Stephan
et al., 2014, 2017], unsteady porous media flows [Zhu et al., 2014, Zhu and Manhart,

3.3 Performance optimisations 143

2016, Sakai and Manhart, 2020, Unglehrt and Manhart, 2022], and fiber suspensions in
non-Newtonian fluid media [Moosaie and Manhart, 2013].

More recently, we have been simulating interfacial flows between a layer of a porous
medium, representing a sediment bed, and strongly turbulent river stream. We employ
a sufficiently large numerical domain and O(1010) grid cells, which are necessary
to truthfully capture the very large-scale motions existing in high Reynolds number
turbulent flows, whilst resolving all the existing scales of motion (cf. Figure 3.1). The
resulting full-resolution data will play a crucial role to improve our understanding
of mass and momentum transfer to the sediment bed. Since many processes in the
benthic ecosystem are controlled by these parameters, we expect our research to be a
new foundation for sustainable river management.

Figure 3.1 Instantaneous velocity field in turbulent flow over a sediment bed.

3.3 Performance optimisations

3.3.1 MPI-level optimisation

104 105
0

1

2

3

4

number of processes [−]

t
im

e
fo

r
c
e
ll
-u

p
d
a
t
e

[µ
s
]

w. SIMD opt.

w/o. SIMD opt.

(a) Time for cell-update refers to the CPU-time required
for one grid cell to advance one step in the time integra-
tion scheme.

104 105

40

60

80

100

120

number of processes [−]

p
a
r
a
ll
e
l
e
ff
ic

ie
n
c
y

[%
]

w/o. SIMD opt.

w. SIMD opt.

(b) The parallel efficiency was defined as 100% for the
first plotted data point (88 nodes).

Figure 3.2 Weak scaling results plotted over the number of processes on SuperMUC-NG. The problem
size is 6.4× 104 cells/process over a single grid level, i.e. only intra-level boundary communication
and SIP pressure solver are relevant. Changes in the background shading indicate a transition of island
boundaries.

Over the two performance optimisation projects in 2015 & 2017, MGLET improved
its parallel-scaling performance by a factor of ≈ 4 and the I/O performance by a
factor of ≈ 25. The details of the MPI-level optimisation as well as the subsequent
performance evaluation on 4 different HPC systems can be found in Sakai et al.
[2019]. At the time of writing, the code exhibits a satisfactory strong scaling up to
a problem size of ≈ 17 billion discrete cells distributed over approximately 32000

144 Chapter 3. MGLET

parallel processes (cf. partially Sakai et al. [2019]), whilst a sufficient weak scaling was
demonstrated up to 135000 parallel processes (cf. Figure 3.2).

3.3.2 SIMD-level optimisation
Consequently, we performed a SIMD optimisation of our two pressure solvers within
the third optimisation project in 2019 [Sakai and Manhart, 2021]. This was motivated by
the recent trend that modern HPC processors are equipped with ever more powerful
yet more energy-efficient internal vectorisation hardware to maintain performance
growth while coping with the stagnated nominal frequency, as well as the ever-
growing energy consumption for the HPC systems. One important example of such
systems for us is SuperMUC-NG at LRZ, which is based on Intel Skylake processors
being equipped with 512-bit ultrawide vector registers. SuperMUC-NG achieves the
theoretical peak performance at ≈ 27 PFLOPS with the expense of ≈ 1.5− 2.4 MW
(private communication). By exploiting Skylake’s extensive SIMD capability, our
optimised code shows up to 20% overall performance improvement even in the range
of O(104) MPI processes (cf. Figure 3.2).

Target hardware
The majority of our large-scale simulations are performed on SuperMUC-NG at LRZ,
which is based on Intel’s Skylake Xeon Platinum 8174 processors. Since the processor
is representative of a variety of modern CPU architectures, we defined it as our target
hardware for our SIMD optimisation effort. The Skylake processor supports the Fused
Multiply-Add (FMA3) as well as the AVX-512 SIMD instruction sets. The processor
is equipped with a three-level hierarchical cache, where the L3 cache with a capacity
of 33 MB is dynamically shared between all 24 cores on a socket, which constitute a
NUMA (Non-Uniform Memory Access) domain. One node consists of two sockets (i.e.
48 physical cores per node), while a fast OmniPath network with 100 Gbit/s is used
to connect those nodes. Despite our focus on the above hardware, we also tested the
results on different CPUs e.g. on AMD Zen2 architectures.

Mixed precision
As the initial profiling results had shown, the performance of the pressure solver
routines of MGLET is largely memory-bound. To obtain accurate high-order statistics
for the scientific investigation of turbulent flow cases, the code is usually operated
in double precision. Depending on the termination criterion specified by the user,
the pressure solver, however, does not benefit from the high-precision floating point
representation in most application cases. An option was added allowing users to
run the multi-grid pressure solver routines in single precision. Both computation
kernels and communication routines benefit from this option. Accordingly, all further
improvements use the single precision performance as a baseline.

SOR solver
The multi-grid pressure solver of MGLET employs the Successive Over-Relaxation
(SOR) method on the refined grid levels. As such, SOR operates as a smoother to
eliminate high-frequency components from the residual. By default, a red-black version
of SOR is used which divides the nodes into a red and a black subset. This separation
allows a parallel update of one subset because no data dependencies exist internally.

The key concept of our optimization strategy was to increase the density of the
parallelly processable data. This approach is successfully demonstrated e.g. by Stürmer
[2005] and comprises a data rearrangement as shown in Figure 3.3. Red and black

3.3 Performance optimisations 145

nodes within a grid box are separated and stored in contiguous sections. Consequently,
no capacity of the vector registers is spent on entries that cannot be processed. At
the same time, the pressure on the cache hierarchy is reduced since fewer memory
pages are requested by the CPU. To decrease the pressure on the cache levels further,
the central coefficient of the stencil is computed on the fly. The resulting increased
arithmetic intensity accelerates the memory-bound loops.

Figure 3.3 Separation of red and black nodes within one grid box. The blue box can be interpreted both
as a memory page or the capacity of the vector registers.

The previously described measures increased the performance of the SOR kernel
routines. Figure 3.4 shows the wall time consumed for one iteration comprising
updates of all red and black nodes. Measurements were made for runs with only 1
active process per socket (2/48) as well as for cases where all physical cores on the
node were assigned one process (48/48). Due to shared cache levels, curves for a
different occupancy of the node exhibit a different behavior once a certain grid size per
process is exceeded. This grid size marks the point where the arrays involved into the
iterative solution can no longer be kept in the caches. For the optimized SOR solver,
this point is delayed until a value of 643 ≈ 2.62 · 105 cells per grid are reached.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0

1

2

·10−4

number of processes involved in the simulation run [-]

w
al
l
ti
m
e
p
er

it
er
at
io
n
[s
]

connect (baseline)

red-black connect with 2 separate calls

Figure 3.4 Node-level performance of the SOR kernels on Intel Skylake Xeon Platinum 8174. One node
carries 2 sockets with 24 cores per socket. Wall times were determined as mean values from 3 independent
runs in single precision. Each process operates embarrassingly parallel on one grid (synchronisation only
with MPI_Barrier).

SIP solver
The SIP algorithm, also known as Stone’s Strongly Implicit Procedure [Stone, 1968],
employs an incomplete lower upper decomposition (ILU). Its stability combined with
a low number of required iterations are frequently mentioned as the major advantages
(e.g.Halada and Lucká [1999] Reeve et al. [2001] Leister and Perić [1994]). Therefore,
the multi-grid pressure solver implemented in MGLET uses SIP to solve the Poisson
equation on the coarsest grid levels.

Leister and Perić [1994] describe a vectorized version of SIP. This approach uses
a wave-front algorithm for three-dimensional applications to resolve the data depen-
dencies during the forward and backward substitution. Dierich et al. [2015] discuss a

146 Chapter 3. MGLET

combination of SIP and the block Jakobi algorithm. The discretization matrix is split
into submatrices which are distributed among different OpenMP threads. Deserno
[2003] elaborates on the wave-front algorithm described by Leister and Perić [1994]
and refers to it as the hyperplane approach. Apart from that, a hyperline version is
introduced which also serves to avoid data dependencies.

An implementation of the vectorization approaches described in the literature
showed a critical deterioration of the performance on several modern vector CPUs.
The reason was found in an extremely high rate of cache misses resulting from the
irregularly-strided memory access patterns. The underlying idea of our optimization
strategy was a reorganization of the data structure. The array entries are rearranged
such that unit-strided memory access is possible for the parallelly executable operations
within one hyperline. Data re-usage is possible when proceeding from one hyperline
to the next. Additionally, the hardware prefetching mechanism is active and helps to
reduce the rate of cache misses drastically.

The kernel operations within the SIP solver comprise the computation of the
residual as well as the forward and backward substitution. During one iteration cycle,
data is retrieved from nine different arrays containing one floating point number
for each cell in the grid box. This property of the algorithm puts a considerable
load on the memory hierarchy. Figure 3.5 shows the changing performance with
increasing amounts of data for two different architectures. On several modern hardware
architectures, the L3 cache level is shared between different cores in a NUMA domain.
We found that optimal node-level performance for SIP is only reached when the data
of all nine arrays fits into the L3 cache. Particularly if all cores on one node are active,
this criterion restricts the number of grid cells per core. For a fully occupied Intel
Skylake Xeon Platinum 8174 node, an optimal grid size of 403 cells was determined.
For this case, the wall time for execution of the SIP kernels is halved.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105
0

0.5

1

1.5

2
·10−3

cells per grid [-]

wa
ll

tim
e

pe
r

ite
ra

tio
n

[s] vect. SIP, 2/48 procs
vect. SIP, 48/48 procs
seq. SIP, 2/48 procs
seq. SIP, 48/48 procs

Figure 3.5 Node-level performance of SIP kernels on Intel Skylake Xeon Platinum 8174. One node carries
2 sockets with 24 cores per socket. Wall times were determined as mean values from 3 independent runs
in single precision. Each process operates embarrassingly parallel on one grid (synchronisation only with
MPI_Barrier).

The MPI communication routines of MGLET had to be adapted to operate efficiently
on the reordered data format for the SIP solver. In a first attempt, a custom MPI data
type was designed to allow unbuffered communication between grids on one level.
Using this strongly irregular data type deteriorated the performance as shown in
Figure 3.6. An improvement, however, could be achieved by explicitly copying the
data into a contiguous buffer. After the MPI communication with contiguous standard
data types, the buffer is unpacked and the data is copied into the hyperline structure.

3.3 Performance optimisations 147

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0

1

2

3

4
·10−4

number of processes involved in the simulation run [-]

wa
ll

tim
e

pe
r

ite
ra

tio
n

[s]
connect (baseline)
connect for hyperline with custom MPI data type
connect for hyperline with buffered data

Figure 3.6 Performance of different implementations of connect() for the hyperline data arrangement.
We used Intel MPI 2019.6.154 on SuperMUC-NG with 48 processes per node. Each process operated on a
grid with 64000 cells. Wall times were determined as mean values from 5 independent runs.

3.3.3 GPU optimisation
Our fourth and most recent optimisation effort is dedicated to upgrading the above
SIMD-optimised code to be able to run on heterogeneous systems. Though the
integrated vector units inside the general-purpose CPUs have significantly improved
the performance, or more importantly the performance-energy ratio over the last
years, there is a hard limit to the improvement and it may have been reached already.
Therefore during the past years, the HPC community has witnessed a persistent trend
towards GPU-accelerated heterogeneous systems. As boldly claimed by several experts,
the famous Moore’s law may have lost its validity, at least for the conventional CPUs.
In contrast, the GPU accelerators are equipped with a great degree of thread-level
parallelism combined with fast-access memory. Together with their excellent energy
efficiency, those characteristics encourage many people to believe that GPUs will
play an important role in future exascale computing. For this very reason, even the
traditionally-CPU vendors, such as Intel, are now looking into the GPU business.
At this point, it is fair to point out that the traditional CFD codes based on the
incompressible Navier-Stokes equations, such as MGLET, are generally lagging behind
in GPU computing in comparison to the other HPC applications (e.g. compressible
Navier-Stokes, molecular dynamics, deep learning solvers). This is due to our specific
need to solve a Poisson problem for the pressure which is the most computationally
intensive part within the code. The pressure problem features rigid data dependencies
of the elliptic nature, which require frequent communications between the subdomains,
therefore between different GPUs where the communication bandwidth is critically
limited.

Introduction
N-body simulations
The tree algorithm
The GADGET4 code
Post-processing tools

4. Tree codes

150 Chapter 4. Tree codes

4.1 Introduction

Italian National Institute for Astrophysics

Numerical methods play an ever more important role in Astronomy and As-
trophysics (A&A). This is true not for theoretical works only, but also for purely
observational projects requiring massive use of computational methods. Numerical
approaches are viewed as a fundamental complement to analytic reasoning, due to
their ability to solve complex systems of equations that are either intractable with
analytic approaches or only compliant with highly approximate treatments.

This chapter is meant to provide a general overview of one of the most pertinent
techniques widely applied to numerical simulations of galaxy formation and evo-
lution. The discussion is focused on the main numerical concepts rather than on a
mathematically detailed exposition of the techniques.

4.2 N-body simulations

In A&A, a N-body simulation is a simulation of a dynamical system of particles,
usually under the influence of physical forces, such as gravity. The particles treated
by the simulation may or may not correspond to single physical objects. For example,
an N-body simulation of a star cluster might have a particle per star, so each particle
has some physical significance. On the other hand, describing all the stars in a galaxy
as point masses would require order 1011 bodies. This may come within reach in
a few years, but at present, it is still essentially infeasible on actual HPC platforms.
Nevertheless, astronomers describe all the components of galaxies (stars, gas, dark
matter) as discrete N-body systems, composed of far fewer particles than there are
in reality, trying to find a balance between numerical accuracy and manageable
computational requirements.

N-body simulations are simple in principle because they require integrating the 6N
ordinary differential equations defining the particle motions in Newtonian gravity. In
practice, the number N of particles involved in a simulation is usually very large and for
each of them, we have to calculate N − 1 interactions, yielding a computational cost of
order O(N2). Therefore, direct integration of the differential equations is prohibitively
computationally expensive for large N. We hence need faster, approximative force
calculation schemes, which can reduce the computational cost to O(NlogN) or better,
at the loss of accuracy. There are different possibilities for this, namely:

◦ particle-Mesh (PM) algorithm

◦ Fourier-transform-based solvers of Poisson’s equations

◦ iterative solvers for Poisson’s equation (multigrid-methods)

◦ hierarchical multipole methods (tree-algorithms)

◦ TreePM methods, hybrid methods that combine both tree and PM algorithms.

In the following, we discuss the tree algorithm that allows us to compute the
gravitational forces efficiently.

4.3 The tree algorithm 151

4.3 The tree algorithm
The Barnes-Hut Algorithm (hereafter BH) describes an effective method for solving
N-body problems. It was originally published in 1986 by Josh Barnes and Piet Hut
Barnes and Hut [1986]. Instead of directly summing up all forces, it is using an
oct-tree-based approximation scheme which reduces the computational complexity
of the problem from O(N2) to O(N log N). The BH algorithm draws a hierarchical
subdivision of space (the volume of the simulation) into cubic cells, each of which is
recursively split into eight subcells (hence the name "oct-tree") whenever more than
one particle is found in the same cell.

4.3.1 Tree construction
We illustrate what the BH algorithm does in two dimensions, also called quadtree.

Figure 4.1 Sketch of the tree-construction in two dimensions also called quadtree.

Let’s assume that there is a bunch of bodies, e.g. 19 bodies, in a (square) 2D domain,
as shown in figure 4.1. This is the full domain and it is represented as the root of the
tree. Then the BH algorithm divides the domain evenly in four quadrants (also called
nodes), yielding the first level of the tree, and counts how many bodies are contained
in each sub-region. According to the prescription provided by the BH algorithm, each
sub-region is recursively subdividing until there is at most one body per cell, called
a leaf of the tree. Let’s focus on the upper right-hand-side quadrant (highlighted in
violet) where there are 5 bodies. Four levels are required to reach the bottom of the
tree. This process is applied to all quadrants in order to complete the tree of the entire
domain.

The pseudo-code to accomplish this task is the following:

Algorithm 4.1 The pseudo-code for the creation of the tree in 2D (also called quadtree). The computational
cost of recreating the quadtree depends on the distribution of the particles (tree depth).

Function BuildTree
{
/* free memory if the tree already exists */
if TreeExists then
ResetTree

/* assign a node to each particle */
/* starting from the root of the tree */

152 Chapter 4. Tree codes

for all particles
{
rootNode -> InsertParticle(particle)

}
}

Function InsertParticle(Particle)
{

/* if the quadrant is empty just assign the particle to that quadrant */
if node is empty
{

store Particle in node as existingParticle
}
/* one particle already in the quadrant */
else if number of particles in this node == 1
{

/* move existing particle to its subquadrant */
quadrant = GetQuadrant(existingParticle)
if SubNode(quadrant) does not exist

create SubNode(quadrant)
SubNode(quadrant) -> InsertParticle(existingParticle)

/* assign particle to its subquadrant */
quadrant = GetQuadrant(Particle)
if SubNode(quadrant) does not exist

create SubNode(quadrant)
SubNode(quadrant) -> InsertParticle(Particle)

}
/* open the quadtree and create subquadrants */
else if number of particles in this node > 1
{

quadrant = GetQuadrant(Particle)
if SubNode(quadrant) does not exist

create SubNode(quadrant)
SubNode(quadrant) -> InsertParticle(Particle)

}

/* increase the number of the inserted particles */
Update number of particles

}

The cost of adding a particle to the tree is proportional to its distance from the root
node (i.e. the depth of the tree). Hence, distributions with many densely packed
particles require more operations because the tree must be subdivided often to place
particles in their own quadrant.

4.3.2 Computing the mass distribution for each tree node

The building of the hierarchical structure is aimed at force calculations. The next
step deals with calculating the mass distribution of the tree, starting from the spatial
distribution of the particles contained in the tree. It consists of computing the total
mass and the center of mass contained in the child nodes of each tree node. The
pseudo-code to calculate the mass distribution of the quadtree is the following:

Algorithm 4.2 The pseudo-code for computing the mass distribution of the quadtree.

Function ComputeCenterOfMass
{

if number of particles in node > 1

4.3 The tree algorithm 153

{
for all NOT empty child quadrants
{

/* get CM and Mass of the current child quadrant */
Quadrant.ComputeCenterOfMass()

/* add the mass of the current child quadrant */
Mass += Quadrant.Mass

/* update the CM (after the loop over all child */
/* quadrants it must be divided by the Mass) */
CenterOfMass += Quadrant.CenterOfMass * Quadrant.Mass

}
CenterOfMass /= Mass

}
/* CM of a leaf */
else if number of particles in node == 1
{

CenterOfMass = Particle.Position
Mass = Particle.Mass

}
}

The computational cost of this algorithm is of order O(N log N).

4.3.3 Tree walk and force calculation

Figure 4.2 Sketch of force evaluation on a single body.

The BH algorithm is faster than the direct summation of all mutual forces in the
way it computes the forces exerted on particles. The tree is walked (again) top-down,
i.e. starting at the root node. Let l be the size or length of the cell currently being
processed, and D the distance from its center of mass (CM) to the target body (the one
for which you want to calculate the acting force). If l/D < θ, where θ is an adjustable
parameter of the simulation, then approximate the group of bodies in the node by their
center of mass, otherwise resolve the node into its subcells and repeat the procedure at
the next tree level.

Let’s focus on the red body p in figure 4.2. At the first tree level, the size of the 3
cells neighboring the one containing the red body is smaller than the distance to p.

154 Chapter 4. Tree codes

As a result, the force they exert on p is approximated by their center of mass. At the
second level of the tree, one cell adjacent p is empty, thus it does not contribute to
the force calculation. However, the other cells at the third level contain bodies, two of
them must be taken into account individually because are close to p, while the cell of
the remaining two is far enough to be treated approximately using the center of mass.
Direct force calculation for the p particle would have implied a contribution from 18
bodies, while the BH algorithm reduces the number of force contributions to 6. The
accuracy and computational load of the BH algorithm can be tuned by adjusting the θ
parameter (direct summation is achieved using θ = 0).

The pseudo-code for the force calculation is then as follows:

Algorithm 4.3 The pseudo-code for computing the gravitational force exerted on a target particle.

Function GravitationalForce(targetParticle, theta)
{

/* total force exerted on targetParticle */
force = 0

/* consider all quadrants starting from the top level */
for all quadrants of rootNode
{

/* evaluate the distance between the target */
/* particle and the center of mass of the node */
D = distance from CM of the node to targetParticle

/* size of current quadrant */
l = size of the node

/* criterion is based on the opening angle parameter theta */
if (l/D < theta)
{

/* approximate the group of bodies in the node by their CM */
force += Gravitational force between targetParticle and node

}
else
{

/* resolve the node into its subnodes and */
/* repeat the procedure at the next tree level */
for all child quadrants q
{

force += q.GravitationalForce(targetParticle)
}

}
}

}

Given a simulation with many bodies the processes of i) constructing the tree and ii)
for each body walking the tree to calculate the force, must be performed (in principle)
at each timestep of the simulation. This is a computationally intensive problem asking
to be parallelized.

In the following, we discuss the tree algorithm implementation in the GADGET4
code and the parallelization strategy.

4.4 The GADGET4 code
GADGET4 is a massively parallel code for N-body/hydrodynamical cosmological
simulations. It offers several state-of-the-art simulation algorithms to be applied to a

4.4 The GADGET4 code 155

variety of different types of simulations. An account of all the numerical algorithms
used by the code is given in the paper Springel et al. [2021].

The simulation code GADGET4 (GAlaxies with Dark matter and Gas intEracT)
supports collisionless simulations and smoothed particle hydrodynamics on massively
parallel computers. The code is written in C++11 standard. Message passing interface
(MPI) orchestrates the communications between concurrent execution processes are
managed explicitly through MPI, or implicitly through shared-memory accesses on
the process on multi-core sockets (the code should be run on parallel platforms MPI-3
compliant). The code is made publicly available under the GNU general public license
and obtainable from the public GIT repository https://gitlab.mpcdf.mpg.de/vrs/
gadget4.

4.4.1 Compilation
Hereafter we describe only what is required in order to compile the code to run a pure
N-body simulation (i.e. without hydrodynamics) using the Tree algorithm. GADGET4
needs the following C++ non-standard library for compilation:

◦ MPI: the Message Passing Interface (version 3.0 or higher). An open-source
implementation of such a library is offered by OpenMPI (https://www.open-
mpi.org/), or MPICH (https://www.mpich.org/).

◦ gsl: the GNU scientific library obtainable from https://www.gnu.org/software/
gsl/.

◦ FFTW3 (optional): the Fast Fourier Transform in the West library obtainable from
http://www.fftw.org. FFTW-3 is only needed if cosmological initial conditions
are created. An MPI-capable version of FFTW-3 is not explicitly required.

◦ HDF5 (optional): The Hierarchical Data Format (available at http://hdf.ncsa.
uiuc.edu/HDF5). This library is required only to read or write snapshot files in
HDF5 format.

Compilation of GADGET4 code needs a C++ compiler supporting C++11 standard
(for GNU g++ this means version 4.x or later). The code also makes use of GNU-Make
and Python as part of its build process.

4.4.2 Building the GADGET4 code
The GADGET4 code encompasses a bunch of subdirectories and a few further files for
the build system in the top-level directory. The most important subdirectory is src/ ,
which contains the actual source code files, grouped into subdirectories according to
their functionality.

The code is configured by two different files, one containing compile-time options,
usually called Config.sh, and one listing runtime parameters, usually called paramfile.txt.
The code uses the GNU make utility for controlling the build process, which is specified
by the file Makefile.

To compile the GADGET4 code on a computer system one has to go through the
following steps:

◦ make sure that the required libraries (see Section 4.4.1) are installed and available,
either loading modules on HPC system, or manually compiled. For instance, on
the HPC Bura, the

~$ module spider Foo

https://gitlab.mpcdf.mpg.de/vrs/gadget4
https://gitlab.mpcdf.mpg.de/vrs/gadget4
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.mpich.org/
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
http://www.fftw.org
http://hdf.ncsa.uiuc.edu/HDF5
http://hdf.ncsa.uiuc.edu/HDF5

156 Chapter 4. Tree codes

command allows you to inspect all the available modules matching the Foo
module name. At the time of writing, both gsl and HDF5 libraries are not
currently available on the system, so they have to be installed locally in the home
directory by the user;

◦ add a new symbolic name for the target computer system to the Makefile.systype
file. For instance, on the HPC Bura, this task is performed using the command

~$ echo SISTYPE=\"bura\" >> Makefile.systype

◦ create inside the Makefile an if-clause in the "define available system" section,
in which two files from the buildsystem/ subdirectory are included. Those files
define path names to the libraries, i.e. either if not in default locations or not
configurable through module-environment (e.g. Makefile.path.<platform_name>),
and that specify the compiler and its flags (e.g. Makefile.comp.<compiler_name>).
For instance, on the HPC Bura, the "define available system" section of the
Makefile is edited as follows:

##########################
#define available systems#
##########################

ifeq ($(SYSTYPE),"bura")
include buildsystem/Makefile.path.default
include buildsystem/Makefile.comp.gcc

endif

where the buildsystem/Makefile.path.default file specifies the locations of the libraries
header files and binaries) installed locally in the user home directory required
by the GADGET4 code (e.g. gsl and HDF5 libraries), while the buildsystem/-
Makefile.comp.gcc file specifies the compiler and all the flags of the compilation
process.

The Makefile should not be modified in any significant way to ensure code
portability, except for adding additional source files to the code.

4.4.3 Running the GADGET4 code
To start a simulation, the executable has to be invoked with the following command:

mpirun -np <Ntasks> <executable> <paramfile>

This will start the simulation with Ntasks MPI processes, and with simulation
parameters, as specified in the parameter file. The code is able to automatically detect
groups of MPI processes running on the same node, and it allows a shared-memory
communication scheme for their data. If more than one node is in use, at least one MPI
process on each node is set aside for asynchronously serving incoming communication
requests from other nodes. As a consequence, multi-node jobs must have at least two
MPI processes on each node.

For example, on the HPC Bura where the batch system SLURM is in use (see
Chapter 2), a batch script similar to the code 4.4 could be used to start a simulation
using two nodes with 24 MPI processes each (i.e. using 48 cores in total). The code
uses 46 MPI processes to perform the computational work because on each node one
process is devoted purely to communication purposes.

4.4 The GADGET4 code 157

Algorithm 4.4 A SLURM script used to start GADGET4 code.

#!/bin/bash

#SBATCH --job-name=gadget4
#SBATCH --nodes=2
#SBATCH --time=00:15:00
#SBATCH --ntasks-per-node=24
#SBATCH --output=gadget4-%j.out

echo
echo "Running Gadget4 on hosts: ${SLURM_NODELIST}"
echo "Running on ${SLURM_NNODES} nodes"
echo "Running using ${SLURM_NPROCS} processors"
echo

SECONDS=0

mpirun -np ${SLURM_NTASKS} ./Gadget4 ./paramfile.txt &> log.txt

TIME=$(($SECONDS))

echo "Execution time is ${TIME} seconds"

A running simulation can be interrupted after every timestep in two ways. The
first requires specifying the CPU-time limit value in the parameter file (TimeLimitCPU
parameter sets the wallclock time limit for the current execution of the code, in seconds),
the code will interrupt itself automatically before the CPU-time limit is reached, and
write a set of restart-files, so that the simulation can be resumed later on. The second
way allows interrupting the code manually by creating a file named stop (it can be
empty and created using the $ touch stop command) in the output directory of the
simulation; the code will then write the restart-files after the current timestep has been
completed. The latest way to stop a running simulation is at compile time through the
STOP_AFTER_STEP macro in the Config.sh file, setting the end of a simulation after
the specified time step. This is meant to simplify performance and scalability tests.

4.4.4 Parallelization options

The Config.sh file allows to switch on/off parallelization options, among which:

IMPOSE_PINNING:
if this macro is switched on the code pins MPI processes to cores taking into ac-
count the processor topology. This feature requires the hwloc library [Broquedis
et al., 2010] installed (hwloc library is distributed under the BSD license.). Note
that many MPI libraries nowadays in any cases enable pinning by default, or can
be asked to arrange for the pinning via options to the MPI start-up command.

IMPOSE_PINNING_OVERRIDE_MODE:
if this macro is switched on then IMPOSE_PINNING is assumed even in the case
the MPI start-up has already been establishing pinning.

ENABLE_HEALTHTEST:
if this macro is switched on then the code tries to figure out whether all CPU
cores are freely available and what is their execution speed. The MPI bandwidth
inter-node and intra-nodes is tested as well.

158 Chapter 4. Tree codes

4.4.5 Parameterfile

The parameterfile must be specified whenever the code is started. Each parameter
value is set up by specifying a keyword (string) followed by either a string or a
numerical value (float or integer), separated by (an arbitrary amount of) whitespaces.
Each keyword needs to be specified once, is type-sensitive, and the order in which
they are specified is arbitrary. Lines with a leading % or # are skipped.

In the following, only the keywords needed to run a pure N-body simulation (i.e.
without hydrodynamics) using the tree algorithm are discussed:

OutputDir /scratch/n-body_simulation
This is the pathname of the directory that holds all the output generated by the
simulation (snapshot files, restart files, diagnostic files). The folder should exist
before the start of the simulation.

SnapFormat 2
A flag that specifies the file format to be used for writing snapshot files. Select 2
for a binary format available from GADGET-2 onwards.

InitCondFile ../CI/Aq-C6-dm
This sets the filename of the initial conditions to be read in at start-up, and they
can be distributed into several files.

TimeLimitCPU 86400
This is the wall clock time limit for the current execution of the code, in seconds.
The run will automatically interrupt itself and write restart files if 85% of this time
has elapsed. Note that this time refers to the wall-clock time on one processor
only, and not to the total CPU time consumed by the code (that it is obtained by
multiplying the total number of cores used by the run).

CpuTimeBetRestartFile 7200
This is the maximum amount of wall-clock time, in seconds, that may elapse
before the code writes a new set of restart files for regular checkpoint.

MaxMemSize 2048
This value gives the maximum amount of memory (in MByte) the code is allowed
to use per MPI process. It is therefore a good idea to set its value to something
close to the amount of physical memory that can be used per MPI process on
the target compute nodes. The possibly memory-per-core allocated through a
workload manager (e.g. in SLURM script through the option #SBATCH –mem-
per-cpu=<size>) should be set accordingly.

TypeOfOpeningCriterion 0
This selects the type of cell-opening criterion used in the tree walks for computing
gravitational forces. A value of 0 results in a geometric opening criterion which is
primarily governed by the opening angle theta, while 1 selects a relative criterion
that tries to limit the absolute truncation error of the multipole expansion for
every particle-cell or cell-cell interaction.

ErrTolTheta 0.45
This is the accuracy criterion parameter, i.e. the opening angle theta, of the tree
algorithm if the geometric opening criterion (i.e. TypeOfOpeningCriterion=0) is
adopted.

ErrTolForceAcc 0.005
This controls the accuracy of the relative cell-opening criterion (if enabled), i.e.

4.4 The GADGET4 code 159

the alpha parameter in Equation 4.6.

ErrTolThetaMax 1.0
When the relative opening criterion is used, the effective opening angle allowed
for a node of little mass may grow very large, possibly approaching the con-
vergence radius of the multipole expansion. The parameter sets the maximum
allowed geometric opening angle.

4.4.6 The GADGET4 tree algorithm
Geometry of the tree

A modified BH algorithm is implemented in GADGET4. The standard implementation
employs a fully refined tree (as discussed in Section 4.3.1), where a new node of half
the parent’s size is created whenever more than one particle falls into the same octant
of the node. Now only when a tree leaf node contains more particles than a given
threshold then this node is split into sub-octants. As a positive effect, this strategy
reduces the depth of the tree, thus the total number of nodes, reducing the memory
requirements accordingly.

Multipole expansion

The gravitational potential generated by particles inside a node at point x is (using for
simplicity G = 1):

Φ(x) = − ∑
j ∈ node

mj

|xj − x| (4.1)

Figure 4.3 Sketch of a tree node and the geometry of the adopted opening angle prescription. The force
evaluation occurs at point x, which has a distance r from the node’s center-of-mass s, so that it sees the
node under an angle of θ = l/r. If this angle θ is lower than the critical opening angle the multipole
expansion of the node can be used.

The Taylor expansion up to the order p of the potential around the centre-of-mass
s yields:

Φ(x) = −
p

∑
n=0

1
n!

Qn ·Dn(s− x) + O(θp+1) (4.2)

with θ being the angle under which the node is seen, as mentioned in Section 4.3.3.

160 Chapter 4. Tree codes

Here Qn are the Cartesian multipole moments:

Qn ≡ ∑
j ∈ node

mj(xj − s)(n) (4.3)

and Dn(x) =∇(n) 1
|x| the derivative tensor. In GADGET4 the user can select at compile

time a selection of p = 1,2,3,4 or 5, meaning that the multipole expansion is carried out
to dipole, quadrupole, octupole, hexadecupole, or triakontadipole order, respectively.

As a consequence the acceleration exerted on a particle at position x can be written
as

a(x) = −∇Φ(x) = −
p−1

∑
n=0

1
n!

Qn ·Dn+1(s− x) + O(θp) (4.4)

Which order of p is most efficient is typically problem dependent. Using high order
reduces force errors at the price of larger memory usage to store more multipole
moments for each node.

Tree walk and opening angle criterion
At the stage of the force calculation, the tree is walked top-down, starting at the root
node. As mentioned in Section 4.3.3, for deciding whether or not a multipole expansion
of the current node is acceptable, the geometric opening criterion, shown in figure 4.3,
is employed. The criterion says that a node can be used if

θ >
l
r

(4.5)

where l is the side length of the cell (i.e. cubic node), r is the distance of the target
particle to the node’s center-of-mass, and finally, θ is a critical angle controlling the
accuracy of the force calculation (the ErrTolTheta parameter in the GADGET4 code as
explained in Section 4.4.5). Such a parameter tunes the accuracy of the force calculation
and the computational cost of the force calculation as well. GADGET4 allows for
an alternative criterion, where a rough approximation of the expected force error is
compared with the magnitude of the total force (evaluated from the previous timestep)

M
r2

(
l
r

)p

< α|a| (4.6)

where α is the ErrTolForceAcc GADGET4 parameter (see Section 4.4.5).

4.4.7 Domain decomposition in the GADGET4 code
One of the main challenges in contemporary HPC is making full use of the parallel
processing power made available by modern computer hardware, which often relies
on many independent compute cores. The current release of GADGET4 expresses
parallelism using a relatively traditional approach that relies on distributed (using
MPI) and shared memory parallelization, combined with a standard object-oriented
programming language C++.

Single compute node is both CPU-time limited and memory limited for large-
size simulations of cosmic structures as required by modern cosmology. Hence,
parallelization on distributed memory machines is mandatory, and, accordingly, data
decomposition strategy plays a key role to scale up the feasible simulation sizes. Data
decomposition should make optimal usage of the distributed memory across nodes,
avoiding as much as possible redundancy and imbalance. Load balancing relies on
two main aspects:

4.4 The GADGET4 code 161

◦ making sure that all processors have an approximately equal amount of work;

◦ letting the distribution of the domain across processes reflect the structure of the
problem so that communications are kept within reason.

The latter item is satisfied by a strategy that tends to preserve the locality of the problem
when distributed over a parallel machine: particles’ positions that are close together
are likely to interact directly (direct force calculation as explained in Section 4.3.3),
so they should be handled by the same processor or at least one not too far away (in
terms of platform topology), in order either to avoid communication or minimize its
overhead. In the case of the BH tree structure, the load balancing becomes a matter of
partitioning the leaves of the tree over the processors. The BH tree construction has an
intrinsic locality because the subtrees of any non-leaf node are physically close, so they
will probably communicate with each other during the task of the force evaluation.

Space-Filling Curves traversals
GADGET4 uses a spatial decomposition in which the simulated volume is divided into
disjoint regions subsequently mapped to individual MPI processes. The distributed
computational algorithm should not change the semantics of the calculation, preclud-
ing, for example, algorithms where the way the domain is cut impacts the geometry of
the tree (the force calculation from walking the tree would be affected).

To fulfill these requirements GADGET4 uses Space-Filling Curves (SFCs). SFCs
provide a contiguous mapping from one-dimensional to d-dimensional space, which is
used to linearize spatially-distributed data (leaf octants) for partitioning. SFCs have
many properties that make them useful for octree traversal:

◦ they are self-similar (like fractals);

◦ they visit each octant exactly once;

◦ they preserve a locality of the mapping onto the d-dimensional hyperspace. In
our case, this means that particles that are close in 3D space are typically close to
the SFC. So if we map the SFC to a linear ordering of processors we will preserve
the locality of the problem.

As 2D examples, two orderings are considered: Morton and Hilbert. The Morton
ordering is a simple SFC that traverses the quadrant’s children in a z-like pattern in
the order I, II, III, IV, as shown in figure 4.4.

Figure 4.4 Template curve for the 2D Morton ordering (left), its first level of refinement (center), and an
adaptive refinement (right).

The pattern at each level of the tree refinement is identical to that used in the first,
so neither reflection nor rotation is performed. As a result, spatially distant parts of the
domain can occur in its linearization ("jumps" in the linearization), particularly as the

162 Chapter 4. Tree codes

curve passes from quadrant II to quadrant III. The 3D version of the Morton ordering
is shown in the left panel of figure 4.6. The template consists of two consecutive z-like
curves, where the end of the first is connected to the start of the second.

Figure 4.5 Template curve for the 2D Hilbert ordering (left), its first level of refinement (center), and an
adaptive refinement (right).

The Hilbert ordering uses the Peano-Hilbert SFC to order the quadrants using a
bracket-like template, with extra inversions and rotations to keep quadrants as close
as possible to their neighbours, as shown in figure 4.5. The Hilbert ordering added
complexity compared to the Morton ordering, which makes the Hilbert ordering harder
to construct. The 3D Hilbert template consists of 2D brackets connected at the endpoint
with the ordering of the second bracket being opposite to that of the first (right part of
figure 4.6).

Fast execution of the octant ordering is essential for an effective load-balancing
algorithm. Since the Morton ordering is (relatively) simple and efficient, typically
code implementations obtain the Hilbert ordering from it by providing appropriate
mapping. The transformations required for the Hilbert ordering are rotations, and more
specifically the Hilbert ordering uses 4 orientations in R2 and 24 in R3. The mapping
is encoded using orientation and ordering lookup tables of dimensions 2d ×Od, where
the SFC in d(= 2,3) dimensions has the number Od of unique orientations. A parent
octant with orientation i determines the orientation and ordering of its children from
row i of each table, i = 0,1, ...,Od − 1. Table 4.1 provides the ordering and orientation
of the Hilbert indexing in two dimensions.

Figure 4.6 Template curve for the 3D Morton ordering (left), and Hilbert ordering (right). The numbers
show the traversal order of leaf octants.

For example, the use of the ordering and orientation lookup tables to generate
the first two levels of the 2D Hilbert SFC is shown in figure 4.7. The root quadrant

4.4 The GADGET4 code 163

has orientation 0, so the child quadrants at the first level are ordered according to
the Morton index sequence provided by row 0 of the ordering Table 4.1: {0 1 3 2}.
Analogously, these child quadrants are assigned orientations according to row 0 of
the orientation Table 4.1: {1 0 0 2}. The next refinement level uses this orientation to
determine the order and orientation of the descendants. For instance, the orientation
of quadrant 2 is 2, so row 2 is used in Table 4.1 to determine the child quadrants’ order
and orientation as {3 1 0 2} and {3 2 2 0}, respectively.

Ordering Orientation

0 1 3 2 1 0 0 2

0 2 3 1 0 1 1 3

3 1 0 2 3 2 2 0

3 2 0 1 2 3 3 1

Table 4.1
Ordering and orientation tables are
used to map between Morton and
Hilbert SFC in 2D. Row i deter-
mines the ordering and orientation
of children when a parent with ori-
entation i is refined.

The lookup table defines a string rewriting system with the sequences of characters
representing the quadrants that the SFC passes through. Looking at figure 4.7, the
starting bracket Hilbert template is represented by the string {0 1 3 2}. On the second
refinement level, each character of the string has been replaced with new entries, each
of which consists of the old entry concatenated with an appropriate character from
a given row of the ordering Table 4.1, using the method previously explained. For
instance, quadrant 3 with orientation 0 is replaced by the string {30 31 33 32}. Repeating
this for the remaining three quadrants gives the string {00 02 03 01 10 11 13 12 30 31
33 32 23 21 20 22} describing the Hilbert SFC at the second refinement level. This
approach works for adaptively-refined curves as well, as in figure 4.5.

Figure 4.7 The sketch explains the use of ordering and orientation lookup Table 4.1 to generate the first
two levels of the 2D Hilbert SFC ordering.

Since the Hilbert SFC preserves better the locality, while the Morton SFC tends
to produce irregularly shaped domains, GADGET4 maps 3D space onto a one-
dimensional curve using the Hilbert SFC, carried out with several fast bit-shit op-
erations, and short lookup tables that deal with the different orientations of the
fundamental figure. Subsequently, if we simply cut the Hilbert SFC into segments of
a certain length, we obtain a domain decomposition that has the property that the
spatial domains are simply connected and quite "compact", i.e. low surface-to-volume
ratio, which in turn is a highly desirable property for reducing communication costs

164 Chapter 4. Tree codes

with neighbouring domains. If we hence assign an arbitrary segment of the Hilbert
SFC to a different partition mapped to a given processor, the corresponding volume is
compatible with the node structure of the global BH tree covering the full volume (a
group of octans of this tree is effectively assigned to each processor). The described
parallelization method does not affect the resulting geometry of the tree, and the
results for the tree force become strictly independent of the number of processors
used. This approach guarantees that the set of multipole expansions seen by any
particle is completely invariant under the domain decomposition. This feature of the
domain decomposition does not mean that the results of the force calculation are binary
invariant when the number of processes is changed, but differences within floating
point round-off error are allowed because mathematical operations are performed in a
different order.

Figure 4.8 Hilbert SFC aimed at building a load-balanced tree adaptively refined. Colors represent the
domain partitions assigned to different processors.

The sketch in figure 4.8 shows the relation between the BH quad-tree and a domain
decomposition based on a Hilbert SFC. The fiducial Hilbert SFC associated with the
simulation volume visits each cell of the adaptively refined tree exactly once. Then
the simulation volume is cut into partitions by segmenting this curve into segments
of approximately constant work-load (load-balancing problem). The net result of this
procedure is that a range of Hilbert keys (one or several consecutive segments chosen
such that an approximate work-load balance is obtained, subject to the constraint of a
maximum allowed memory imbalance) is assigned to each processor, which defines the
domain decomposition and is now used to move the particles to their target processors,
as needed. In addition, each processor constructs a top-level tree where all nodes at the
higher level are represented. However, the local tree has some nodes that consist of
pseudo-particles, which represent the mass or multipole moments on other processors.
These nodes cannot be opened because the corresponding particle data reside on a
different processor, but when encountered in the tree walk, the pseudo-particle knows
on which processor the actual information resides. Moreover, the sketch illustrates that
the problem has a certain locality: the subtrees of any non-leaf node are physically
close, so there will probably be communication between them. More importantly, if
the domain is refined by another level, the Hilbert SFC can be refined accordingly. The
workload can then be redistributed to neighboring processors on the curve, and this
process of load redistributing still has locality preserved.

4.4 The GADGET4 code 165

A pure optimization strategy, designed to increase the computational speed, is
how particles are stored in the memory of each local domain. Particles are ordered
in memory according to a finely resolved Hilbert curve, because particles that are
adjacent in memory after Hilbert ordering will have close spatial coordinates, so they
tend to have quite similar interaction lists of particles. During the force calculation
stage, the CPU works on them consecutively, and with such an ordering in many cases,
data are already stored in the local cache, which reduces the number of CPU cycles to
fetch the data from the (slower) main memory (RAM).

Hybrid parallelization approach
Nowadays the computational performance increase comes from a larger number of
compute cores and not from improved single-core performance. In this context, it can
be advantageous to combine distributed memory with shared-memory parallelization.
A possible choice is to place one MPI process per multi-core compute node, which uses
all the amount of memory available on the node, and the other cores are exploited with
parallelisation techniques for shared memory, such as OpenMP. In practice, the usage
of a hybrid MPI+OpenMP approach can reduce the number of MPI processes to reach
a given total memory size and core number. However, the complexity of the algorithms
used on GADGET4, makes it difficult to reach the same or even higher speed with
MPI+OpenMP compared with a pure MPI code exploiting the same number of cores,
because only code rearrangements or algorithmic changes are required to make this
effective. The software developer then has to face a double challenge of parallelization;
an effective distributed algorithm across nodes, which can be further parallelized well
at the "local" fine-grained level through a task-based approach.

GADGET4 exploits a new feature of MPI-3, which allows the allocation of shared
memory that can be jointly accessed by all the MPI processes (of the same MPI com-
municator) residing on the same compute node. This feature allows the replacement
of common MPI_Send or MPI_Recv operations within a compute node by direct read
or write memory accesses like in serial programming, so avoiding MPI communica-
tions and synchronization within a shared memory node. In the GADGET4 code,
one MPI process on each node is designed to exclusively handle communications
requests. Whenever an MPI process within a compute node wants to access remote
memory owned by an MPI rank on a different compute node, it sends the request
to the target node’s designated communication rank. The latest fetches the data via
shared memory access from its compute node, while the target MPI rank is possibly
busy doing useful computation and does not have to cooperate for this. In principle,
this strategy eliminates the synchronization overhead in shared-memory algorithms,
since the designed communication node’s rank is not involved in the computation
but constantly is waiting for incoming communication requests, which possibly can
be answered with minimal latency. Since actual HPC platforms now have more than
∼24 cores per compute node (this number is going to increase in upcoming HPC
machines), the price to pay for setting aside one core for handling pure communication
instead of useful computation does not impact the raw performance. We also note
that this strategy of doing MPI-based shared memory programming also i) reduces
the memory footprint of the application because some data structures are equal on all
MPI-ranks belonging to the same compute node (e.g. the top-level tree), ii) guarantees
asynchronous progress of MPI message exchanges while the cores are performing
computational work (overlapping of computation and communication as explain in
Chapter 2.4.2), iii) reduces the cost for the domain decomposition algorithm and
problems of scalability in the MPI software stack.

166 Chapter 4. Tree codes

4.5 Post-processing tools
Post-processing consists of many software tools for analyzing and visualizing volumet-
ric data coming from numerical simulations or observations. Typically they support
structured, variable-resolution meshes, unstructured meshes, and discrete or sampled
data such as particles, and are focused on driving physically-meaningful inquiry. We
briefly describe two of them, publicly available, designed for exploration and visual
discovery in particle-based datasets coming from numerical simulations.

4.5.1 Gadgetviewer
This is a program for the visualisation of GADGET snapshots (available on GitHub
https://github.com/jchelly/gadgetviewer.git). It can read GADGET4 snap-
shots (type 1, type 2 and HDF5 formats) and provides an interactive display of the
particle distribution, optionally with the capability of colouring any quantity that can
be read from the snapshot. There are facilities to pick out populations of particles
by various properties (e.g. temperature, density, etc in SPH runs), to follow particles
between snapshots, and to make movies. It can be used with other simulation codes
which produce GADGET-like snapshots.

Command line flags
To get a full list of command line options, run:

gadgetviewer --help

Reading a snapshot
The name of a snapshot file to read can be specified on the command line or a file
can be selected through the File menu using the GUI. If the file is part of a multi-file
snapshot then the other files will be read as well. Positions, IDs and masses are always
read for all particles:

gadgetviewer <snapshot>

Gadgetviewer allows to read sub-regions from a snapshot using the –region
command line flag, e.g.:

gadgetviewer --region=x,y,z,r <snapshot>

where x,y,z are the coordinates of the center of the selected region, and r is the radius.
Since the program reads the entire snapshot and then discards particles outside the
region, this can be slow for large snapshots.

Making plots
Gadgetviewer allows to plot histograms of the values of a group of particles or to
make a scatterplot of a given property against another (e.g. density vs temperature)
through the Make plot options menu. Particles in the current sample are shown in red
and each set of selected particles is shown in the appropriate colour for that set.

https://github.com/jchelly/gadgetviewer.git

4.5 Post-processing tools 167

Figure 4.9 Visualization of a GADGET snapshot thought the Gadgetviewer tool. Star particles are plotted.

Figure 4.10 Example of histograms generated using Gadgetviewer.

4.5.2 Splotch

Splotch [Dolag et al., 2008] is a public available1 ray-tracer software tool which
supports the visualization of cosmological simulations data. The algorithm it relies
on is designed to deal with point-like data (GADGET snapshot format), performing
complex ray-tracing calculations in a fast and effective way. A visual data exploration
is a robust approach for rapidly and intuitively inspecting large-scale data sets, e.g. for
isolating regions of interest within which to perform time-consuming post-processing
analysis or for identifying new features and patterns. Visualization tools can also
provide effective means for communicating scientific results not only to researchers
but also to members of the general public (e.g outreach and dissemination).

Splotch relies on an effective mix of the OpenMP and MPI parallel programming
paradigms, and can exploit GPU accelerators, which widely populate nowadays HPC

1Splotch repository: https://github.com/splotchviz/splotch

https://github.com/splotchviz/splotch

168 Chapter 4. Tree codes

architectures, using the CUDA programming language (CUDA implementation in
Splotch is described in detail in Rivi et al. [2014]).

Splotch overview

The Splotch code is written in C++ and is self-contained with no dependencies from
external libraries (apart from OpenMP, MPI, and specific file formats, e.g. HDF5). The
main stages of the code are briefly summarized below:

1. Data loading - many readers are available supporting custom file formats (includ-
ing the GADGET file format). At least the particle’s coordinates are required
(three scalars), optionally along with physical quantities (e.g. mass, density,
temperature) and other geometric quantities (e.g. smoothing length).

2. Processing and Rasterization - firstly, particle coordinates are roto-translated and
projected according to camera settings, which sets the line of sight and the
width of the field of view. Then, active particles that lie within the scene are
identified and assigned with RGB colour component; this stage is referred to as
Rasterization.

3. Rendering - The contribution of the active particles to the final rendering (the
process of generating a synthetic image) is calculated by solving the (simplified)
radiative transfer equation along lines of sight originating from each pixel:

dI(x)
ds

= (Ep −ApI(x))ρp(x), (4.7)

where I(x) is the radiation intensity at position x, s represents a coordinate along
the line of sight, Ep and Ap are the coefficients of emission and absorption of the
particle p and ρp(x) is the tracer transported by the particle (e.g. mass, density,
temperature, or energy) described with a Gaussian distribution:

ρp(x) = ρ0,p exp
(
−∥x− xp∥2/σ2

p

)
, (4.8)

where xp denotes particle coordinates, and σp is the particle smoothing length. In
practice the distribution is clipped to zero at a given distance Λ = λ · σp, so that
any ray passing at distance larger than Λ is unaffected by the physical quantity
ρp. The Equation 4.7 is further simplified assuming that Ep = Ap, so that the
solution does not depend on the particles integration order along the line of
sight, thus simplifying the parallel design of the algorithm. The assumption
typically produces visually appealing images (e.g. 4.11). Equation 4.7 is solved
for each colour component (R, G, B) separately but concurrently in parallel. If
the ρp quantity is a scalar (e.g. mass, temperature, or density), then can be
mapped to RGB components via look-up tables (user-defined colour palettes),
while when ρp is a vector the mapping to RGB components is performed using
vector components, e.g. ρR

p = vx, ρG
p = vy, and ρB

p = vz.
Through MPI the code distributes chunks of particles among different processors,

each performing a serial computation and producing a partial rendering, subsequently
gathered by the root processor which composes the final renderings (all the partial
contributions are merged by means of a collective reduction operation producing
the final image). The Rasterization stage is parallelized in shared memory exploiting
multiple OpenMP threads working on a different bunch of particles. The Rendering
stage is more complex because an efficient one-particle-per-thread approach without
race conditions is not possible and memory usage must be managed carefully. This is

4.5 Post-processing tools 169

due to the fact that the Rasterization stage assigns to each particle its projected radius
R0 =< r(p) >

r(p) = A(p)
λσp

Sbox
Npix (4.9)

where A(p) is the transformation to screen coordinates, λ and σp are defined in
Equation 4.8, Sbox represents a normalization factor measuring the size of the simulated
box containing all the particles, and Npix is the horizontal (or vertical) image resolution.
As a result of Equation 4.9 the typical case scenario is a cluster of particles with
different radii each influencing common screen pixels. The dependency from r(p)
is the source of two major difficulties for GPU implementation. Firstly, two CUDA-
threads acting on different particles could try to update the same screen coordinates
causing a race condition because of concurrent accesses to the same memory location
and thus leading to erroneous results. Secondly, as different particles have a different
projected radius R0 (i.e. they affect a different number of pixels), it is hard to achieve
optimal workload balancing among CUDA-threads. Customised solutions have been
adopted to circumvent the aforementioned problems while avoiding paying large
performance penalties [Rivi et al., 2014].

Figure 4.11 Example of visualizations of small (left), medium(middle) and large (right) data sets. Images
from Jin et al. [2010].

Evolutionary computation
Evolutionary computation software
JGEA structure and components
Experimental evaluation: two case studies
Concluding remarks

5. Evolutionary Computation with JGEA

172 Chapter 5. Evolutionary Computation with JGEA

5.1 Evolutionary computation

University of Trieste

Evolutionary Computation (EC) is one of the main families of approaches to
solving optimization problems in artificial intelligence (AI), taking inspiration from the
Darwinian Theory of Evolution as introduced in [Darwin, 1859]. In order to discuss
EC, it is necessary to define what an optimization problem is in this setting. In a quite
general form, only two components are needed:

◦ A set S of possible solutions. This set need not be finite or have any specific
structure, but only provide "solutions". Here a solution can be more or less
anything: a permutation of nodes in a graph, a production schedule, the shape
of an antenna, a controller for a robot, etc.

◦ A way of comparing solutions, generally in the form of a fitness function f : S→R

mapping each solution to a real number expressing the quality of a solution. This
quality can either be minimized (e.g. if it is a prediction error) or maximized (e.g.
if it represents the amounts of goods produced by a specific schedule).

Given the exceptionally wide class of optimization problems and the generality of
the final objective, i.e. finding either argmaxs∈S f (s) of argmins∈S f (s), it is important
to remark that there exists no general efficient solution to finding the optimal solution
to a problem. For some problems performing an exhaustive search is possible or there
exist exact efficient algorithms to find a solution (e.g. if the problem can be formulated
as a linear programming problem). In such cases, there is no need to resort to AI
techniques in general and EC in particular. For some problems, however, there is no
known efficient exact or approximate algorithm and even the problem itself might
have a fitness function that is a "black box". If that is the case and good - but maybe
not optimal - solutions can be acceptable, then EC provides a general way of solving a
large class of optimization problems while requiring the practitioner to specify only
the problem, leaving the solution strategy to one of the many EC algorithms.

To make EC more concrete, in this chapter we will introduce the basic notions of
evolutionary algorithms (EA) using as an example one of the most used EA, namely
Genetic Algorithms (GA). For a more in-depth introduction to EA and metaheuristics in
general, we refer the reader to the introductory book by Sean Luke [Luke, 2013]. We
will also introduce the reader to the current landscape of EC libraries before introducing
the actual focus of the chapter: the Java General Evolutionary Algorithm (JGEA) frame-
work (https://github.com/ericmedvet/jgea/releases/tag/v2.0.2), which was
introduced in [Medvet et al., 2022], of which this chapter is an extended version. We
assume that the reader has a passing familiarity with java or with the concepts of
object-oriented programming.

5.1.1 Genetic algorithms
Introduced by John Holland in the Seventies [Holland, 1975], GA, at least in their
simplest form, are based on the idea of solving optimization problems where solutions
can be encoded as a binary string of fixed length n.

Genotype and phenotype
In each solution, we will distinguish the phenotype and the genotype. The genotype is
the representation of the solutions - in this case a binary string of fixed length. The

https://github.com/ericmedvet/jgea/releases/tag/v2.0.2

5.1 Evolutionary computation 173

phenotype is the actual solution being represented. For example, it is possible to
encode a subset B of a given finite set A as a binary string representing the elements of
B that a present in A. While the set B is the phenotype, the binary string representing
it will be the genotype. The operations that we are going to define operate only on the
genotype or the phenotype, usually never both together.

Based on phenotype

Based on genotype

Roulette Wheel Selection
Ranked Selection
Tournament Selection

One-point Crossover
Uniform Crossover
Bit-flip Mutation

Start

Population Initialization

Fitness Evaluation

Term. Criteria Stop

Selection

Crossover

Mutation

no

yes

Figure 5.1 The standard evolution cycle employed by most GA. The actions operating on the phenotype
are generally shared among different representations, while the ones based on the genotype are specific
for each representation. For each (general) operation some of the most commonly used GA operations
are presented.

The evolution cycle
Like all EA, which are population-based optimization methods, GA employs a multiset
P, i.e. a set with multiplicities, of solutions which is iteratively improved with time.

174 Chapter 5. Evolutionary Computation with JGEA

Such a set is called a population and each solution is called an individual, following
the metaphor of natural evolution. This iterative improvement is performed using a
collection of operations employed one after the other:

1. Fitness Evaluation. This step, sometimes partially overlapping with the next
one of selection, consists in computing, for each element of P, the quality of
the represented solution (i.e. of the phenotype). This is usually performed by
evaluating a problem-specific function f : {0,1}n→R on each of the elements of
P.

2. Selection. Mimicking natural selection, this step consists in a resampling (with
reinsertion) of P according to the fitness of the individuals, with individuals with
better fitness having a higher probability of being selected. Different selection
methods provide different probability distributions, usually in an implicit way.
This operation, making use only of the fitness of an individual, clearly operates
only on the phenotype.

3. Crossover. Also called recombination, this operation mimics the reproduction
of pairs of individuals that happens for natural populations. Here, the binary
strings of two solutions that were selected in the previous step have some of their
components exchanged to generate new solutions. Since this operation works
directly on the solutions’ representation, it only deals with the genotype of a
solution.

4. Mutation. Similarly to DNA mutations happening in the real world, some of the
bits of a solution can be flipped with a small probability. Mutation, thus, ensures
that the pattern of bits that are absent in a population can reappear during the
mutation process. As with crossover, also mutation deals only with the genotype
of an individual.

A GA can thus be described as shown in figure 5.1, where an initial population of
binary strings of length n is initially generated by sampling uniformly at random
the space {0,1}n, then the operations of fitness evaluation, selection, crossover, and
mutation are iteratively applied until some termination criteria are not satisfied. Each
such iteration is called a generation. Finally, the termination criteria are usually in
the form of a limit in the number of fitness evaluations, in reaching a certain fitness
threshold or having no increase in the best individual in the population for a certain
number of iterations.

Selections

As stated above, selection algorithms operates based on the fitness of the individuals
and ignore the actual genotypes of the solutions. One of the simplest selections is
Roulette-wheel selection, where each individual is assigned a probability of being selected
that is proportional to the fitness of that individual. Assuming that the fitness f needs
to be maximized, then the probability of individual x to be selected in population P is
given by f (x)

∑y∈P f (y) . Since one individual with a very large fitness can actually "dominate"
the selection, it is usually preferable to use the ranking of the solutions instead of
using the fitness value directly, as done in the ranked selection. One of the most used
kinds of crossover is tournament crossover, combining a simple implementation with
the advantages of ranked selection. The idea is to extract (with reinsertion) t ∈N

individuals from the population and then select the one with the best fitness. By
changing t, i.e. the tournament size, it is possible to change the selection pressure, with
larger values of t making the selection of less fit individuals more unlikely.

5.1 Evolutionary computation 175

Crossovers
Crossover is based on the idea that two different solutions can evolve good - or even
optimal - subsolution independently as long as there is a process allowing them to
combine them. Crossover starts with two individuals x = x1, . . . xn and y = y1, . . . ,yn and
combines the bits of the two. The classical crossover for GA is one-point crossover, where
a random number k ∈ {1, . . . ,n} is generated and two new solutions are generated by
swapping the bits of x and y after position k:

x′ = x1, . . . , xk,yk+1, . . . ,yn y′ = y1, . . . ,yk, xk+1, . . . , xn

While one-point crossover mimics well the idea of splitting and recombining individu-
als, it is dependant on the order in which the bits are used in the representation, e.g.
bits in position 1 and n will almost always be split apart by crossover, while 1 and 2
will almost always be kept together. Uniform crossover is usually employed to avoid the
problems of one-point crossover. There, each bit between the two parents is exchanged
independently from all other bits with a probability of 0.5.

Mutations
In GA mutation is usually performed as bit-flip mutation. Given an individual x =
x1, . . . xn, each bit is individually flipped with a probability pm, called the mutation
probability which is usually small (a common default value is pm = 1/n). The effect of
mutation is to allow the search process of GA to be able to reach each possible solution
in the search space. Since mutation changes a solution in a random way - not even
recombining two possibly good solutions like crossover - it is important to keep the
mutation probability small: a value that is too high would make GA behave similarly
to random search.

From GA to EA: why a general software framework
As it is possible to observe, even by selecting one standard EA algorithm, namely
GA, there are multiple "moving parts" to control, from the different operators to
employ, to the way the fitness is defined. With more complex representations and
more complex EA, the support of a library able to allow easy implementation of
different EC techniques is essential. Thus, the EC framework should be target-oriented,
focusing on the exigencies of the community. As such, it should be both solid and
extensible. In fact, people who resort to EC as a mere tool for solving problems aim at
solidity, i.e. they require a simple and usable system, which gives some guarantees
and already has built-in algorithms to be used off-the-rack. Conversely, EC researchers
demand an extensible framework, which allows the implementation of new algorithms
or representations leveraging lower-level abstractions, and gives the possibility to test
them on already written benchmarks, without incurring divergent change due to the
additions. Both requirements call for clean and solid modeling of core concepts in
EC, based on advanced design and programming techniques, and taking advantage of
state-of-the-art design patterns. In addition to the ability to easily define the problem
to be solved and the EA to use, most EC techniques can easily be implemented in a
parallel and distributed manner. For example, fitness evaluation, selection, crossover,
and mutation can all be performed independently, having only to reconstruct the
population at the end of each generation. A modern EC framework must be able to
extract this parallel component of existing EA and run them on multiple execution
units or even machines. As we are going to see, those are not properties that are easy
to find in EC software, however, JGEA is a modern EC framework that satisfies most
of the requirements of a modern, extensible, and efficient EC framework.

176 Chapter 5. Evolutionary Computation with JGEA

5.2 Evolutionary computation software

When researchers and practitioners start to search for which EC software to employ,
they find that the landscape is largely different from other areas of AI research. For
neural networks libraries like PyTorch [Paszke et al., 2019] or Tensorflow [Abadi et al.,
2015] are used in most of the existing software, but such widespread and well-known
libraries are non-existing in the area of EC.

Software for experimenting with EC was traditionally hand-crafted for individual
problems, without aiming at generality or re-usability, thus hampering the ability of EA
to be widely employed. Already in one of the most successful early frameworks, lil-gp
[Zongker et al., 1995], significant modifications were needed for application to many
different domains like, for example, to RoboCup [Luke, 2017]. The first ideas regarding
a more general approach to the design and implementation of software systems were
put forward, and the current of thought was started by works proposing ideas for
more general frameworks for specific EA, like Genetic Programming (GP) [Keith and
Martin, 1994, Cona, 1995] and memetic algorithms [Krasnogor and Smith, 2000]. Some
years later, the work of Gagné and Parizeau [2006] formalized the design principles to
be followed when modeling an EC general framework, including discussions about
representations, parameters management, and reconfigurability.

Good intentions notwithstanding, the first examples of frameworks in the field of
EC were mostly focused on meeting a subset of the proposed requirements, inevitably
leaving some desirable features behind. Among them, we find some interesting yet
sectoral examples written in C, like the GP-oriented lil-gp [Zongker et al., 1995],
or PGAPack [Levine, 1996] and GAUL [Adcock, 2009], both focusing on Genetic
Algorithms (GAs). Concerning the general EC frameworks, instead, C++ and Java
seemed to be the preferred languages. Notably, the objectives of extensibility and
ease of use were rarely achieved altogether. In fact, on one side there were modular
frameworks, designed with open architectures, like the C++ Open BEAGLE [Gagné
and Parizeau, 2002] or the Java ECJ [Luke et al., 2006], JEAF [Caamaño et al., 2010], or
JCLEC [Ventura et al., 2008]. On the other side, there were foolproof systems, intended
for the general public, such as the EO [Keijzer et al., 2001], written in C++, or its Java
counterpart, Evolvica [Rummler and Scarbata, 2001, Rummler, 2007], both featuring a
GUI.

Near all of the listed frameworks have been abandoned as of today, with few
exceptions, like JCLEC [Ramírez et al., 2015] or ECJ [Luke, 2017, Scott and Luke, 2019].
Nonetheless, most of the updates were carried out ensuring backward compatibility,
thus not including modern language features, or focusing on speed of execution over
clarity, becoming cumbersome to use or extend.

In the last decade, there has been a sprout of novel EC frameworks encompassing
up-to-date design patterns and programming styles. A vast majority of them were
written in Python, due to its growing popularity in the science community, but more
exotic languages like R (ecr [Bossek, 2017, 2018]), Julia (EBIC.JL [Renc et al., 2021]), or
even JavaScript [Merelo et al., 2014, 2016] were not left out of the game. Concerning
the Python ones, some were still rather sectoral, as PyshGP [Pantridge and Spector,
2017], Ponyge2 [Fenton et al., 2017], jMetalPy [Benitez-Hidalgo et al., 2019], or EvoJAX
[Tang et al., 2022], but there were also general ones, like DEAP [Fortin et al., 2012],
or the more recent LEAP [Coletti et al., 2020]. Various modern EC frameworks were
also developed in more traditional languages like the C and Python-based GA-lapagos
[Jamieson et al., 2020], Operon C++ [Burlacu et al., 2020], and some Java-written ones.
Among the latter, Chips-n-salsa [Cicirello, 2020] and Jenetics [Wilhelmstötter, 2019] are

5.3 JGEA structure and components 177

fairly similar to JGEA: as they are both frequently updated and make use of modern
Java features. However, unlike JGEA, Chips-n-salsa is not suited for GP, while Jenetics
does not appear to be explicitly designed for research-related purposes.

5.3 JGEA structure and components

Here we describe the JGEA framework, which we designed and developed to ad-
dress the previously mentioned problems. JGEA is written in the Java programming
language (namely Java SE 17), which is naturally suited for modeling complex and
variegate concepts, thanks to its object-orientation and the presence of adequate syn-
tactic constructs, e.g. generics and interfaces. Moreover, Java is portable and it can
also be used in combination with other non-Java tools by virtue of language bindings.
JGEA is modular and it displays different levels of abstraction, to accustom the needs
of researchers planning to extend it without having to re-write new algorithms from
scratch. To make JGEA accessible to end users, the levels of abstraction go down to
the implementation of ready-to-use algorithms. In addition, we provide JGEA with
benchmarks to ease the testing of new algorithms and with some additional features to
optimize the execution of experiments and monitor them. The framework has been in
use and updated since 2018. It is currently at version 2.0.2 and available for download
at https://github.com/ericmedvet/jgea/releases/tag/v2.0.2. JGEA has been
employed for the experimental evaluation in more than 25 research papers.

The architecture of JGEA has been designed to capture the main components of
an EA. The goal of the solver is to find better and better solutions to the problem,
potentially obtaining an optimal solution. Those high-level concepts are captured in
JGEA with two interfaces: Problem and Solver. Starting from those two (general)
main components, JGEA defines more specific interfaces and implementations for the
specific problem being tacked and the specific EA being used as a solver. A fraction of
the class structure of JGEA is shown in figure 5.2.

5.3.1 Problem
The Problem interface should be implemented by any class whose aim is to describe a
problem in terms of a set of solution S and a partial ordering between solutions given
by a PartialComparator<S>:

1 publ ic i n t e r f a c e Problem<S> extends PartialComparator <S> { }

This comparison is generally employed to assign a quality measure to a solution, like
the fitness of most EA algorithms. Due to the widespread use of this comparison
mechanism, a specific QualityBasedProblem interface is part of JGEA, adding two
functionalities to the Problem interface: a function deputy to map a solution to a
quality value, and a way of comparing qualities.

1 publ ic i n t e r f a c e QualityBasedProblem <S , Q> extends Problem<S> {
2 Function <S , Q> qual i tyFunct ion () ;
3 PartialComparator <Q> qualityComparator () ;
4 }

Here, Q represents the quality- or fitness-space.
Note that qualityComparator() returns a PartialComparator<Q> and not a Com-

parator<Q>, as we do not necessarily want to enforce total ordering between qualities
of solutions. For those cases in which we do want to enforce this, we extend Quality-
BasedProblem to a TotalOrderQualityBasedProblem. This interface adds a totalOrder-

https://github.com/ericmedvet/jgea/releases/tag/v2.0.2

178 Chapter 5. Evolutionary Computation with JGEA

Comparator(), and provides a default implementation for the qualityComparator(),
where a PartialComparator is obtained from the Comparator.

1 publ ic i n t e r f a c e TotalOrderQualityBasedProblem <S , Q> extends
2 QualityBasedProblem <S , Q> {
3 Comparator<Q> totalOrderComparator () ;
4 @Override
5 d e f a u l t PartialComparator <Q> qualityComparator () { /* . . . */ }
6 }

In addition, since oftentimes the quality of a solution is "naturally comparable", i.e.
Q extends Comparable, we model this extending TotalOrderQualityBasedProblem
with a ComparableQualityBasedProblem.

1 publ ic i n t e r f a c e ComparableQualityBasedProblem <S , Q extends
2 Comparable<Q>> extends TotalOrderQualityBasedProblem <S , Q> {
3 @Override
4 d e f a u l t Comparator<Q> totalOrderComparator () {
5 r e turn Comparable : : compareTo ;
6 }
7 }

To model more specific classes of problems, it is sufficient to add interfaces extend-
ing or classes implementing Problem (or one of its subinterfaces, see Section 5.4.1).
Among them, we have already included classification problems, symbolic regression
problems (including many synthetic functions recommended as benchmarks [White
et al., 2013]), multi-objective problems, and various benchmarks as the Ackley function
[Ackley, 2012], the Rastrigin function [Törn and Žilinskas, 1989, Mühlenbein et al.,
1991], or the K landscapes for GP [Vanneschi et al., 2011].

I Problem

I QualityBasedProblem I GrammarBasedProblem

I ProblemWithValidation I TotalOrderQualityBasedProblem I MultiObjectiveProblem

I ComparableQualityBasedProblemC ClassificationProblem

C SymbolicRegressionProblem C Ackley C Rastrigin

C KLandscapes

Figure 5.2 Hierarchy of problems.

5.3.2 Solver

A problem can be solved by an implementation of the Solver interface, which is
responsible for providing the caller with a collection of solutions upon the invocation
of its method solve().

1 publ ic i n t e r f a c e Solver <P extends Problem<S > , S> {
2 Col lec t ion <S> solve (
3 P problem ,
4 RandomGenerator random ,
5 ExecutorServ ice executor
6) throws SolverExcept ion ;
7 }

5.3 JGEA structure and components 179

We highlight that, in general, a Solver might not be suitable for solving all possible
problems. Therefore, we introduce the generic parameter P to indicate the subset of
problems a Solver can tackle.

We also remark that solve() takes two additional elements besides the P problem:
a RandomGenerator and ExecutorService, since a Solver can be non-deterministic
and capable of exploiting concurrency. The contract for the solve() method is that
the passed RandomGenerator instance will be used for all the random choices, hence
allowing for repeatability of the experimentation (reproducibility, instead, might not
always be guaranteed due to concurrency). Similarly, the contract states that the
ExecutorService| instance will be used for distributing computation (usually, of the
fitness of candidate solutions) across different workers of the executor. Population-
based optimization methods are naturally suited for exploiting parallel computation
(see, e.g. the large taxonomy of parallel methods already developed more than 20
years ago [Nowostawski and Poli, 1999]), and, even though we design JGEA aiming at
clarity and ease of use, we also take into consideration efficiency.

We designed the solve() method of the Solver interface in order to model the
stateless nature of the solver with respect to its capability, i.e. to solve problems.
Namely, since both the RandomGenerator and the ExecutorService are provided
(besides the problem itself) when solve() is invoked, different problems may in principle
be solved at the same time by the same instance of the solver.

Going more in details, we recall that all relevant EAs share an iterative structure,
as the one sketched in algorithm 5.1. We translate it into the solve() method of the
IterativeSolver interface.

Algorithm 5.1 High-level structure of iterative EAs.

1 funct ion solve(. . .) :
2 s⃗← init(. . .)
3 while !(terminate(. . .)) do
4 s⃗← update(. . .)
5 end
6 r e turn extractSolutions(⃗s)
7 end

We resort to the template pattern [Gagné and Parizeau, 2006] in this interface,
thus we do not specify any behavior concerning the initialization, the update, or the
termination of the algorithm, and delegate those practicalities to the realizations of the
IterativeSolver. In addition, despite the stateless nature of the IterativeSolver, we
need a way of keeping track of its execution, e.g. of the population being optimized,
hence we introduce the concept of state, T state, which is evolved across iterations
starting from an initial value. We use a generics parameter since, in principle, different
solvers might require to store different structures during their execution. Moreover,
the state is used by the Listener to monitor the execution (see Section 5.3.4).

1 publ ic i n t e r f a c e I t e r a t i v e S o l v e r <T , P extends Problem<S > , S>
2 extends Solver <P , S> {
3 d e f a u l t Col lec t ion <S> solve (
4 P problem ,
5 RandomGenerator random ,
6 ExecutorServ ice executor ,
7 Lis tener <? super T> l i s t e n e r
8) throws SolverExcept ion {
9 T s t a t e = i n i t (problem , random , executor) ;

10 l i s t e n e r . l i s t e n (s t a t e) ;
11 while (! terminate (problem , random , executor , s t a t e)) {

180 Chapter 5. Evolutionary Computation with JGEA

12 update (problem , random , executor , s t a t e) ;
13 l i s t e n e r . l i s t e n ((T) s t a t e . immutableCopy ()) ;
14 }
15 l i s t e n e r . done () ;
16 r e turn e x t r a c t S o l u t i o n s (problem , random , executor , s t a t e) ;
17 }
18 }

We remark that the structure of algorithm 5.1 which is implemented via the inter-
face IterativeSolver is also common to other forms of population-based optimization
methods, such as particle swarm optimization or ant colony optimization. Thus, we
highlight the ease of extending JGEA to accommodate other flavors of metaheuristics
starting from already existing core components. Narrowing our view on EAs, we
provide one last level of abstraction: the abstract class AbstractPopulationBasedItera-
tiveSolver, which implements the interface IterativeSolver.

1 publ ic abstract c l a s s A b s t r a c t P o p u l a t i o n B a s e d I t e r a t i v e S o l v e r <T
2 extends POSetPopulationState <G, S , Q> , P
3 extends QualityBasedProblem <S , Q> , G, S , Q>
4 implements I t e r a t i v e S o l v e r <T , P , S> {
5 /* . . . */
6 }

We model two key concepts related to EAs:
(a) individuals - accounting for the genotype-phenotype representation (further de-

tailed in Section 5.3.3)
(b) the population - a partially ordered set of individuals, which we store in a custom

state, a POSetPopulationState.
In addition, thanks to the newly added notions, we can provide concrete implemen-
tations of the init() method (we initialize the state and sample the initial population,
see Section 5.3.3), the terminate() method (we check if a given termination condition
is verified), and the extractSolutions() method (we take the best individual(s) in the
population, see Section 5.3.3).

Similarly to what we have seen for the problems, it is possible to extend the abstract
class AbstractPopulationBasedIterativeSolver to implement specific EAs. In particular,
realizations will be characterized by the update() method implementation and might
require additional customization, e.g. in the state or the initialization (easily achievable
through overriding). Thus, we remove the burden of engineering EAs from scratch,
providing users with a canvas for specific implementations.

We included in JGEA some significant EAs implementations, such as standard
GAs (declined in GP [Koza and Poli, 2005], Grammatical Evolution [O’Neill and
Ryan, 2001], Hierarchical Grammatical Evolution [Medvet, 2017], Weighted Hierar-
chical Grammatical Evolution [Bartoli et al., 2018], Context-free Grammar Genetic
Programming [Whigham, 1995]), Evolutionary Strategies (ES) [Beyer and Schwefel,
2002], OpenAI ES [Salimans et al., 2017, Nolfi, 2021], CMA-ES [Hansen and Ostermeier,
2001, Hansen, 2016], Map Elites [Mouret and Clune, 2015], Speciated Evolver [Medvet
et al., 2021], Diversity Driven Grammar-guided Genetic Programming [Bartoli et al.,
2019], Differential Evolution [Storn and Price, 1997], and NSGA-II [Deb et al., 2002].

5.3.3 Individual
We use the notion of individual, modeled in the Individual record, to capture the
genotype-phenotype representation. To this extent, we employ two generic parameters,
G and S, to define the genotype and the phenotype spaces, respectively. In addition,

5.3 JGEA structure and components 181

since we also store the quality (or fitness) of the solution, i.e. of the phenotype encoded
by the genotype, within the individual, we also add a generics parameter Q.

1 publ ic record Individual <G, S , Q>(
2 G genotype ,
3 S solut ion ,
4 Q f i t n e s s ,
5 long f i tnessMappingI tera t ion ,
6 long g e n o t y p e B i r t h I t e r a t i o n
7)

Creation
To create an instance of Individual, we need to:

1. obtain a genotype
2. map it to the corresponding phenotype
3. evaluate the fitness of the candidate solution.

Note that an Individual also stores the iteration at which the fitness is evaluated
(fitnessMappingIteration), and the iteration at which the genotype is obtained (geno-
typeBirthIteration); these values model the "evolutionary age" for the individual in
the evolutionary optimization run it belongs to.

A genotype can either be created from scratch or it can be the result of the applica-
tion of genetic operators on pre-existing genotypes. In the first case, we employ the
factory design pattern to build random genotypes.

1 publ ic i n t e r f a c e Factory <T> {
2 Lis t <T> build (i n t n , RandomGenerator random) ;
3 }

We provide JGEA with some default implementations of factories for the most common
genotypes, such as numeric genotypes, bit-strings, or trees.

Concerning genetic operators, we translate the concept into a general interface,
extended by two more specific ones, accounting for the mutation and crossover opera-
tors.

1 publ ic i n t e r f a c e GeneticOperator <G> {
2 Lis t <? extends G> apply (
3 Lis t <? extends G> parents ,
4 RandomGenerator random
5) ;
6 i n t a r i t y () ;
7 }

We remark that both methods deputy to computing the new genotype, build() and
apply(), take an instance of RandomGenerator to ensure reproducibility.

After obtaining a genotype, we map it to the corresponding phenotype with a
simple Function<? super G, ? extends S>, which can easily be defined on-the-
fly, using Java lambda expressions. Last, we compute the fitness of the solution by
invoking a Function<? super S, ? extends Q>, such as the qualityFunction() of a
QualityBasedProblem.

Selection
Several EAs require selecting individuals for reproduction or survival. To model the
selection process in JGEA we resort to the Selector interface.

1 publ ic i n t e r f a c e S e l e c t o r <T> {
2 <K extends T> K s e l e c t (
3 P a r t i a l l y O r d e r e d C o l l e c t i o n <K> ks ,

182 Chapter 5. Evolutionary Computation with JGEA

4 RandomGenerator random
5) ;
6 }

We provide a few concrete selector implementations, such as the Tournament, repli-
cating the tournament selection, or the First and Last, returning the best or worst
individual (or a random one among them, in case of fitness ties). Again, we note the
importance of passing an instance of RandomGenerator to the select() method for
reproducibility concerns.

5.3.4 Listener
Even though problems could in principle be solved in-the-void, it is often necessary to
track the execution of the solver, extracting and saving information during the run. To
this extent, we introduce the last core component of JGEA: the Listener interface.

1 publ ic i n t e r f a c e Lis tener <E> {
2 void l i s t e n (E e) ;
3 d e f a u l t void done () { }
4 }

As briefly seen from the code of the IterativeSolver in Section 5.3.2, a Listener has
the duty to monitor, i.e. listen() to, the updates of the state during the execution of the
solve() method.

We delegate the creation of Listeners to a ListenerFactory, which is used to build
"augmented" listeners.

1 publ ic i n t e r f a c e Lis tenerFac tory <E , K> {
2 Lis tener <E> build (K k) ;
3 }

This derives from the need to monitor the execution, either parallel or sequential,
of multiple instances of Solver solving multiple instances of Problem, being able to
distinguish individual executions while saving or printing all information on the same
target (e.g. the same CSV file for all the evolutionary runs). Moreover, a Listener might
need additional information (an instance of K) to "augment" the results obtained by all
invocations of the listen() method (e.g. the random seed of the specific run). To this
extent, we invoke the build() method for each new execution with needed information
K k passed as an argument, to obtain a properly augmented Listener to be assigned to
the run. We provide various realizations of the ListenerFactory interface, such as the
TabularPrinter, used to pretty-print useful information on the standard output, or the
CSVPrinter, employed to save data to a CSV file.

Concerning the information to be extracted from the state, one might be interested
in the size of the population, the quality of the best individual, some function of
the best individual, and so on. To allow the users to easily define the information
they want to extract, and associate a name, and possibly a display format, to it, we
introduce the NamedFunction interface. Typically, a List of NamedFunctions is passed
to the constructor of a ListenerFactory, and each of them is invoked on a state within
the listen() method to extract the needed information. These constructs make use of
modern Java features inspired by functional programming, and favor the achievement
of complex behavior, i.e. extracting non-trivial information from an execution, possibly
making use of composite functions, in a concise and elegant manner.

A typical example of the construction of a TabularPrinter is the following, which
prints on the standard output the current iteration, the total number of births, the
seconds elapsed since the start of the execution, the fitness of the best individual, and

5.4 Experimental evaluation: two case studies 183

the distribution of fitness in the population (as a histogram), together with the name of
the employed solver (to be passed within a Map data structure to the build() method),
as displayed in figure 5.3.

1 Lis tenerFac tory <POSetPopulationState <? , ? , ?
2 extends Double > , Map<Str ing , Object >> l i s t e n e r F a c t o r y =
3 new TabularPr inter <>(
4 L i s t . of (
5 i t e r a t i o n s () ,
6 b i r t h s () ,
7 elapsedSeconds () ,
8 f i t n e s s () . of (bes t ()) ,
9 h i s t (8) . of (each (f i t n e s s ())) . of (a l l ())

10) ,
11 L i s t . of (a t t r i b u t e (" s o l v e r "))
12) ;

It is important to notice that the listenerFactory will be able to listen to state
updates for POSetPopulationStates constrained only to have at least a Double as
fitness for the individuals. As a consequence, this listener might be used to monitor
and track solver runs on different problems, provided they match the kind of state
they work on.

Figure 5.3 Sample output obtained via TabularPrinter. For sparing screen space, the names of columns
(each being a NamedFunction) are automatically abbreviated. Moreover, a graphical indication of the
trend for each value is shown in the form of a colored arrow, when appropriate. Through the composition
of instances of NamedFunction, complex processing of monitored quantities can be performed, as the
histogram of fitness values.

5.4 Experimental evaluation: two case studies

Our experimental evaluation of JGEA encompasses two case studies, each aimed at
testing different, and possibly contrasting, aspects and features of the framework. The
first case study, detailed in Section 5.4.1, covers the requirements of ease of use and
solidity for end users of an EC framework. In particular, said users might want to
adopt EC to solve newly defined problems, even combining the EC framework with
external software. The second case study, instead, deals with the extensibility of JGEA.
This case study, discussed in Section 5.4.2, examines the needs of researchers in the
field of EC, who would want to add new algorithms without implementing everything
from scratch, being able to test them right away on domain-appropriate benchmarks.

184 Chapter 5. Evolutionary Computation with JGEA

5.4.1 JGEA scalability

In order to assess the suitability of JGEA for using EC as a problem-solving tool, we
consider the case study of an end user who needs EC to solve an optimization problem.
As already mentioned several times, end users who rely on JGEA as a mere tool,
require a solid and reliable framework, which is handy and easy to understand, and
whose computation time efficiently scales with available resources. This unwinds in
being able to :

1. simply, yet precisely, define the Problem at hand
2. neatly choose and utilize an appropriate Solver combined with the right Listener

to collect the needed information during an execution
3. carry out the experimental evaluation within a reasonable time-frame.

Bridging the first two requirements, there is the concept of representation, as generally
users do not evolve solutions to their problem directly, but rather rely on some form
of encoding. Therefore, being able to conveniently choose an appropriate solution
representation becomes a crucial additional requirement.

We evaluate how JGEA meets the listed requirements in sections 5.4.1, 5.4.1, 5.4.1.
To avoid being overly general, we focus on the practical setting of evolutionary robotics
[Alattas et al., 2019], in which researchers make use of EC to optimize robots-either
the controller, the body, or even the sensory apparatus-to achieve a certain task. In
particular, we consider the optimization of a neural controller for a class of modular
soft robots, similarly to what we have done in [Nadizar et al., 2021].

Problem definition

Given a problem statement written in natural language, e.g. "the goal is to optimize the
controller for a robot for the task of locomotion", to formalize it within the JGEA frame-
work a user needs to extend the Problem interface or any of its subinterfaces. Therefore,
they first need to identify the nature of the solution, i.e. determine the solution space
S, and then they need to decide where to place themselves along the hierarchy of
interfaces presented in Section 5.3.1.

In this case, the solution consists of a robot, i.e. an instance of the Robot class,
which, thanks to its optimized controller, outperforms the others at the locomotion
task. This task is already modeled in the employed robotic simulation framework
[Medvet et al., 2020], within the Locomotion class. Such class is deputy to simulating
the locomotion of a robot for t f simulated seconds and returning its outcome, that is
an object storing data about the executed simulation.

1 Outcome outcome = locomotion . apply (robot) ;

Since the user is interested in the quality of solutions (which can be obtained
from the Outcome) and they can establish a total ordering among them, based on the
velocity vx extracted from the Outcome, the proper interface to be implemented is
TotalOrderQualityBasedProblem. To this extent, it is convenient for the user to define
a record, or a class, implementing TotalOrderQualityBasedProblem, to avoid creating
the qualityFunction() and the totalOrderComparator() on-the-fly at every invocation.

1 publ ic record LocomotionProblem (
2 Function <Robot , Outcome> qual i tyFunct ion ,
3 Comparator<Outcome> totalOrderComparator
4) implements TotalOrderQualityBasedProblem <Robot , Outcome> { }

Then, the user can simply instantiate the LocomotionProblem record, specifying
the desired qualityFunction and totalOrderComparator.

5.4 Experimental evaluation: two case studies 185

1 Locomotion locomotion = buildLocomotionTask (/* . . . */) ;
2 Problem problem = new LocomotionProblem (
3 robot −> locomotion . apply (robot) ,
4 Comparator . comparing (Outcome : : g e t V e l o c i t y) . reversed ()
5) ;

Solver and listener choice and usage
After formally defining the problem, the user needs to solve it, i.e. they need to
choose and utilize an appropriate Solver for the task at hand. We remark that this
phase should be as frictionless as possible, even, and especially, for researchers who
are not proficient in EC and only use it as a tool. Some basic knowledge of the
genotype-phenotype binomial and the main concepts in EC should suffice.

Concerning the genotype-phenotype representation, the user must select an encod-
ing for their solution, i.e. how to represent the robot. This boils down to choosing
which parts of the robot are handcrafted and which parts are to be optimized. Here,
we consider the case in which the body of the robot is fixed, and the goal is to find the
best parameters for the Artificial Neural Network (ANN) that controls it. Therefore,
the genotype consists of the list of parameters of the ANN, a List<Double>. To
obtain a solution, i.e. a robot, from this genotype, the user needs to specify how to
build a robot with a controller with those parameters, i.e. they need to specify the
genotype-phenotype mapping function.

1 Function <Lis t <Double > , Robot> mappingFunction = l i s t −> {
2 MultiLayerPerceptron mlp = new MultiLayerPerceptron (
3 /* . . . */ ,
4 l i s t //here we s p e c i f y the parameters of the MLP
5) ;
6 r e turn new Robot (body , new Centra l izedSensing (body , mlp)) ;
7 } ;

Once the genotype space is well-defined (here, G is List<Double>), the user
needs to select an appropriate EA among the available ones. Given the numeric
genotype, a simple form of ES is the go-to EA, which is available in JGEA in the
class SimpleEvolutionaryStrategy. Note that the user can employ the chosen EA
without having to worry about its internals, as long as they can provide the required
constructors parameters, such as the genotype-phenotype mapping function, the
List<Double> factory, the stop condition, and some numeric parameters.

1 publ ic SimpleEvolut ionaryStrategy (
2 Function <? super Lis t <Double > , ? extends S> solutionMapper ,
3 Factory <? extends Lis t <Double>> genotypeFactory ,
4 i n t populat ionSize ,
5 Predicate <? super Sta te <S , Q>> stopCondition ,
6 i n t nOfParents ,
7 i n t nOfEl i tes ,
8 double sigma ,
9 boolean remap

10) { /* . . . */ }

Even though at this point the user is ready to apply the Solver to their Problem,
they might be interested in monitoring the execution with a Listener. For instance, a
common need is to keep track of some information during the progress of evolution on
a CSV file, which can be easily addressed with the CSVPrinter, mentioned in Section
5.3.4.

At this point, all needed elements are defined, and the user can solve their problem,
as shown in the following excerpt of code.

186 Chapter 5. Evolutionary Computation with JGEA

1 Solver s o l v e r = new SimpleEvolut ionaryStrategy (/* . . . */) ;
2 L i s t e n e r l i s t e n e r = new CSVPrinter <>(/* . . . */) . bui ld (/* . . . */) ;
3 Col lec t ion <Robot> s o l u t i o n s = s o l v e r . so lve (
4 problem , random , executor , l i s t e n e r
5) ;

Finally, we remark that oftentimes users are interested in performing multiple
optimizations, to ensure the generality of their results, regardless of randomness. To
this extent, the following code can be used to perform 10 optimizations, printing all
the necessary information on the same CSV file.

1 Solver s o l v e r = new SimpleEvolut ionaryStrategy (/* . . . */) ;
2 L i s t e n e r F a c t o r y l i s t e n e r F a c t o r y = new CSVPrinter <>(/* . . . */) ;
3 f o r (i n t i = 0 ; i < 1 0 ; i ++) {
4 L i s t e n e r l i s t e n e r = l i s t e n e r F a c t o r y . bui ld (Map. of (" seed " , i)) ;
5 Col lec t ion <Robot> s o l u t i o n s = s o l v e r . so lve (
6 problem , new Random(i) , executor , l i s t e n e r
7) ;
8 }

From the resulting CSV file, users can conveniently analyze the experimental data
altogether, extracting aggregate information about the progress of evolution and the
obtained solutions. For instance, they can effortlessly achieve a report of the progress
of solutions fitness along generations, as displayed in figure 5.4.

0 100 200 300 400 5000
2
4
6
8

Generations

Ve
lo
ci
ty

𝑣 𝑥

Figure 5.4 The median and interquartile range of the fitness, i.e. the velocity vx, of the best robot across
10 optimizations during evolution.

Performance and scalability
End users of JGEA could suffer from constrained availability of run time or resources,
so having well-designed and optimized software becomes not only an added value
but also a necessity. Even though EAs themselves are not particularly computationally
heavy, some of the operations they need to perform, e.g. fitness evaluation might
indeed be more costly from a computational point of view. It is therefore important
for the software to take advantage of available resources to distribute the costliest
procedures, eventually speeding up the entire process.

Here, we provide a brief experimental assessment of the performance of JGEA,
to highlight its scalability with the number of available resources. We consider the
evolutionary robotics setting described in sections 5.4.1 and 5.4.1, in which the fitness
evaluation of each solution-the robot-requires simulating it for a fixed and relatively
large amount of time to ensure that the robot is correctly performing the given
task: 40 seconds of simulation time takes ≈ 0.8 seconds of (one) core time in our
settings. We employ the aforementioned ES, with a population size of npop = 36. We

5.4 Experimental evaluation: two case studies 187

emulate the resource constraints by limiting the number of available threads to nt,
and the maximum wall time to tc (we set the maximum wall time as the termination
criterion). We experiment with nt ∈ {1,2,4,9,18,36} and tc = 30 minutes. We perform
the evaluation on a 18 core workstation (Intel Xeon Processor W-2295 from 3.0 to
4.6GHz with 64GB of DDR4 RAM running OpenJDK 17 on Ubuntu 21.10). Since nt is
always smaller than the number of available cores, considering hyper-threading, the
threads can constantly execute in parallel. Since this is only an illustrative experiment
we perform one execution for each value of nt, but we remark that normally a user
would execute their evaluations multiple times due to randomness.

For each execution, we measure the number of fitness evaluations performed and
the velocity of the best robot in the population as a function of elapsed computation
time. We report these quantities in the plots of Section 5.5, with a different color for
each nt.

0 10 20 300

2

4

Elapsed time [min]

N
.o
ffi

tn
.e
v.
[·10

4]

𝑛𝑡 = 1 2 4 9 18 36

0 10 20 30
Elapsed time [min]

Ve
lo
ci
ty

𝑣 𝑥

Figure 5.5 The number of fitness evaluations (above) and the fitness vx of the best individual in the
population (below) vs. elapsed time (in minutes).

The results presented in the two figures support our claims concerning the scalabil-
ity of JGEA. Not surprisingly, from the top plot of figure 5.5 we notice a clear linear
dependency between the number of fitness evaluations performed and the amount
of time, the steepness of which depends on nt. This is a direct consequence of our
implementation of the fitness evaluation process, which is performed in parallel on
each of the workers of the ExecutorService passed to the solve() method. Therefore, by
increasing the number of available workers, which corresponds to nt, we allow more
evaluations to be performed simultaneously, thus accelerating the whole optimization
process.

Some slightly more interesting results come out of the bottom plot of figure 5.5,
where we display the velocity of the best individual as a function of computation time.
Even though these outcomes are a direct consequence of the observations drawn above,
they are more relevant for practical cases where users have tight time constraints but
more available resources and require a good solution quickly.

5.4.2 JGEA extensibility
To the extent of evaluating the flexibility of JGEA and its suitability for accommodating
new algorithms, we examine the case study of an EC researcher who wants to imple-

188 Chapter 5. Evolutionary Computation with JGEA

ment their newly designed algorithm in the framework. Even though a researcher
could, in principle, implement everything from scratch, enclosing their algorithm in an
existing framework could prove advantageous from two points of view:

(a) it saves coding time, as there are a gamut of already-defined structures available
(b) it provides a range of ready-to-use benchmarks to test the algorithm on.

Without loss of generality, we consider the specific case of a researcher who
implements Map Elites (ME) [Mouret and Clune, 2015] in JGEA pretending the
algorithm not to be already available in the framework. Our choice fell on ME since it
is a quality-diversity algorithm, so it slightly differs from more classical EAs, whose
goal is to find only the best solution and is, therefore, suitable to prove that JGEA is
general enough to host various flavors of EAs.

The first necessary step towards the inclusion of ME in JGEA encompasses a
formal definition of the EA, either in natural language or, preferably, in the form of
a pseudo-code. Here, to avoid ambiguities, we consider the situation in which the
formalization occurs in pseudo-code, we report it in Algorithm 5.2, but for the sake of
clarity, we also provide a brief comment on the code. The algorithm is initialized with
the creation of an empty feature map M⃗, that is filled with at most npop individuals.
Then, as long as the termination condition is not satisfied, npop new individuals are
created in batch, by mutating randomly selected parents, and added to the map M⃗.
Finally, the solutions are extracted from the map M⃗ and returned.

Algorithm 5.2 ME [Mouret and Clune, 2015] (batched version), with entry point in mapElites(), and the
inner working of addToMap().

1 funct ion mapElites(. . .) :
2 M⃗← ∅
3 f o r c← 1, . . . ,npop do
4 i← randomIndividual(. . .)
5 M⃗← addToMap(M⃗, i)
6 end
7 while !(terminate(. . .)) do
8 f o r c← 1, . . . ,npop do
9 p← select(M⃗)

10 o← mutate(p)
11 M⃗← addToMap(M⃗,o)
12 end
13 end
14 r e turn extractSolutions(M⃗)
15 end
16 funct ion addToMap(M⃗, i) :
17 d⃗← extractFeatures(i)
18 i f M⃗(d⃗) = ∅ or quality(M⃗(d⃗)) < quality(i) then
19 M⃗(d⃗)← i
20 end
21 r e turn M⃗
22 end

At this point, the researcher needs to frame their EA as a class extending the
AbstractPopulationBasedIterativeSolver, since it provides basic facilities that can
be reused here as, e.g. the initialization and the termination criterion test. To this
end, it is convenient to highlight the chunks of ME that match the subroutines of
algorithm 5.1 (as already done in algorithm 5.2), namely init(), terminate(), update(),
and extractSolutions(), since each of them corresponds to a method in the Abstract-
PopulationBasedIterativeSolver abstract class. This step is not only extremely useful
to drive design and coding choices, but it also acts as a preliminary testing ground for
the proposed EA, helping to identify possible shortcomings. Also, some EAs might

5.4 Experimental evaluation: two case studies 189

not be directly formalized into the canonical init-update-terminate structure, and this
phase is meant for re-framing them.

Then, once the high-level correspondence between pseudo-code and code has been
drawn, the researcher needs to start designing the actual MapElites class. This phase
starts from the signature of the class, where the researcher is inevitably forced to make
a decision concerning the allowed values for the generics parameters, T, P, G, S, and Q.
While ME does not pose specific constraints on either P, G, S, or Q, its state T is required
to store additional data besides the usual elements of the POSetPopulationState, that
is the feature map M⃗. Therefore, the research needs to define a custom state, possibly
within the MapElites class, extending the POSetPopulationState, where to store a
data structure accounting for M⃗, that is MapOfElites.

1 publ ic s t a t i c c l a s s Sta te <G, S , Q>
2 extends POSetPopulationState <G, S , Q> {
3 pr ivate f i n a l MapOfElites <Individual <G, S , Q>> mapOfElites ;
4 }

Next, the researcher will have to identify which additional elements to use in the
definition of an instance of the MapElites class concerning its super class AbstractPop-
ulationBasedIterativeSolver. In particular, ME requires a template for building the
MapOfElites, i.e. a list of features and a method for extracting the features from an
individual, and a mutation operator to build offspring genotypes. We do not cover
the details about the data structures employed for representing the listed elements, as
these are beyond the discussion.

1 publ ic c l a s s MapElites <G, P extends QualityBasedProblem <S , Q> , S , Q>
2 extends A b s t r a c t P o p u l a t i o n B a s e d I t e r a t i v e S o l v e r <
3 MapElites . S ta te <G, S , Q> , P , G, S , Q> {
4 pr ivate f i n a l Mutation <G> mutation ;
5 pr ivate f i n a l Function <Individual <G, S , Q> ,
6 Lis t <Double>> f e a t u r e s E x t r a c t o r ;
7 pr ivate f i n a l Lis t <MapOfElites . Feature > f e a t u r e s ;
8 }

Last, the researcher must give functionalities to the MapElites class. Thanks to the
template design pattern, the canvas for the solve() method is already there, yet some of
its subroutines are defined as abstract or need to be overridden for the specific case of
ME. Having underlined the correspondence between the functions in algorithm 5.1
and algorithm 5.2, this phase comes relatively straightforward, and mostly consists of
raw coding.

1 @Override
2 publ ic void update (P problem , RandomGenerator random , ExecutorServ ice
3 executor , S ta te <G, S , Q> s t a t e) throws SolverExcept ion {
4 Lis t <G> allGenotypes = s t a t e . mapOfElites . a l l () . stream () . map(
5 Indiv idual : : genotype) . t o L i s t () ;
6 Col lec t ion <G> offspringGenotypes = IntStream . range (0 ,
7 populat ionSize) . mapToObj (i −> mutation . mutate (al lGenotypes . get (
8 random . n e x t I n t (al lGenotypes . s i z e ())) , random)) . t o L i s t () ;
9 Col lec t ion <Individual <G, S , Q>> o f f s p r i n g I n d i v i d u a l s = map(

10 offspringGenotypes , L i s t . of () , solutionMapper ,
11 problem . qual i tyFunct ion () , executor , s t a t e) ;
12 s t a t e . mapOfElites . addAll (o f f s p r i n g I n d i v i d u a l s) ;
13 s t a t e . se tPopula t ion (new DAGPartial lyOrderedCollection <>(
14 s t a t e . mapOfElites . a l l () , comparator (problem))) ;
15 s t a t e . incNOfI t e ra t ions () ;
16 s t a t e . updateElapsedMil l is () ;
17 }

190 Chapter 5. Evolutionary Computation with JGEA

The content of update() slavishly follows the prescriptions of algorithm 5.2, with
the only addition that the individuals of the MapOfElites M⃗ are doubled in the DAG-
PartiallyOrderedCollection of the state to allow the usage of ready-made functions
monitoring the population from there.

In conclusion, we observe that adding new EAs to JGEA is quite straightforward.
In addition, we remark that the implementation process can help researchers to frame
their EA in a more understandable manner [Medvet et al., 2021, Nieto-Fuentes and
Segura, 2022]. In fact, JGEA provides a canvas for the EA implementation, which
gently forces a researcher to cast their algorithm into a well-known and clearly defined
structure.

5.5 Concluding remarks
In this chapter we presented JGEA, an already established and well-developed Java
framework for evolutionary computation. We can identify three strong reasons for
using JGEA for both research on EC and application of evolutionary techniques to
real-world problems:

1. JGEA provides an expressive way of encoding the common (and not-so-common)
kinds of optimization problems that can be found 2in the wild". By decoupling
the representation of the solution space and the solution quality it is possible to
have a larger range of domains in which JGEA can be applied. The framework
also allows for easy definition of new evolutionary techniques, as shown in
Section 5.4.2.

2. Another reason for using JGEA is the scalability of the framework, as shown
in Section 5.4.1. JGEA allows specifying an executor, thus simply achieving
multiple kinds of parallelism.

3. Finally, both for using EAs as optimizers and for performing research on them
observability is an important feature. Thanks to the ability to inspect, track, and
save information allowed by the JGEA Listener interface, it is not necessary to
break multiple levels of abstraction to keep track of the state of the evolutionary
process.

References

Bibliography
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, i X. Zheng. Tensorflow:
Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, 2015. Accessed: 01-
November-2022.

D. Ackley. A connectionist machine for genetic hillclimbing, volume 28. Springer Science & Business Media, 2012.

Adaptive Computing. MOAB Workload Manager. https://adaptivecomputing.com/moab-hpc-suite/, 2021a.
Accessed: 01-January-2022.

Adaptive Computing. TORQUE Resource Manager. https://adaptivecomputing.com/cherry-services/torque-
resource-manager/, 2021b. Accessed: 01-January-2022.

S. Adcock. Genetic algorithm utility library. URL http://gaul. sourceforge. net, 2009.

R. J. Alattas, S. Patel, i T. M. Sobh. Evolutionary modular robotics: Survey and analysis. Journal of Intelligent & Robotic
Systems, 95(3):815–828, 2019.

J. Barnes i P. Hut. A hierarchical o (n log n) force-calculation algorithm. nature, 324(6096):446–449, 1986.

A. Bartoli, M. Castelli, i E. Medvet. Weighted hierarchical grammatical evolution. IEEE transactions on cybernetics, 50
(2):476–488, 2018.

A. Bartoli, A. De Lorenzo, E. Medvet, i G. Squillero. Multi-level diversity promotion strategies for grammar-guided
genetic programming. Applied Soft Computing, 83:105599, 2019.

D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, i C. V. Packer. Beowulf: A parallel workstation
for scientific computation. In Proceedings, international conference on parallel processing, volume 95, pages 11–14, 1995.

A. Benitez-Hidalgo, A. J. Nebro, J. Garcia-Nieto, I. Oregi, i J. Del Ser. jMetalPy: A Python framework for multi-
objective optimization with metaheuristics. Swarm and Evolutionary Computation, 51:100598, 2019.

H.-G. Beyer i H.-P. Schwefel. Evolution strategies–a comprehensive introduction. Natural computing, 1(1):3–52, 2002.

J. Bossek. ecr 2.0: a modular framework for evolutionary computation in R. In Proceedings of the genetic and evolutionary
computation conference companion, pages 1187–1193, 2017.

J. Bossek. Performance assessment of multi-objective evolutionary algorithms with the R package ecr. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion, pages 1350–1356, 2018.

F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S. Thibault, i R. Namyst. hwloc: a
Generic Framework for Managing Hardware Affinities in HPC Applications. In IEEE, editor, PDP 2010 - The 18th
Euromicro International Conference on Parallel, Distributed and Network-Based Computing, Pisa, Italy, Feb. 2010. doi:
10.1109/PDP.2010.67. URL https://hal.inria.fr/inria-00429889.

https://www.tensorflow.org/
https://adaptivecomputing.com/moab-hpc-suite/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://hal.inria.fr/inria-00429889

192 BIBLIOGRAPHY

B. Burlacu, G. Kronberger, i M. Kommenda. Operon C++ an efficient genetic programming framework for symbolic
regression. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pages 1562–1570,
2020.

P. Caamaño, R. Tedín, A. Paz-Lopez, i J. A. Becerra. Jeaf: A java evolutionary algorithm framework. In IEEE Congress
on Evolutionary Computation, pages 1–8. IEEE, 2010.

A. J. Chorin. Numerical solution of the navier-stokes equations. Mathematics of computation, 22(104):745–762, 1968.

V. A. Cicirello. Chips-n-salsa: A java library of customizable, hybridizable, iterative, parallel, stochastic, and
self-adaptive local search algorithms. Journal of Open Source Software, 5(52), 2020.

CNRM. HPC Bura. https://cnrm.uniri.hr/bura/, 2021. Accessed: 01-January-2022.

M. A. Coletti, E. O. Scott, i J. K. Bassett. Library for evolutionary algorithms in python (LEAP). In Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion, pages 1571–1579, 2020.

J. Cona. Developing a genetic programming system. AI Expert, pages 20–29, 1995.

C. Darwin. The origin of species by means of natural selection, 1859.

K. Deb, A. Pratap, S. Agarwal, i T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

F. Deserno. Basic Optimization Strategies for CFD-Codes. Regionales Rechenzentrum Erlangen - RRZE, 2003.

F. Dierich, K. Wittig, A. Richter, i P. Nikrityuk. Parallelization of the 3d sip algorithm. In AIP Conference Proceedings,
volume 1648, page 030035. AIP Publishing LLC, 2015.

K. Dolag, M. Reinecke, C. Gheller, i S. Imboden. Splotch: visualizing cosmological simulations. New Journal of Physics,
10(12):125006, Dec. 2008. doi: 10.1088/1367-2630/10/12/125006.

J. J. Dongarra i A. J. van der Steen. High-performance computing systems: Status and outlook. Acta Numerica, 21:
379–474, 2012.

M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, i M. O’Neill. Ponyge2: Grammatical evolution in
python. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1194–1201, 2017.

F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, i C. Gagné. DEAP: Evolutionary algorithms made
easy. The Journal of Machine Learning Research, 13(1):2171–2175, 2012.

C. Gagné i M. Parizeau. Open BEAGLE: A New Versatile C++ Framework for Evolutionary Computation. In GECCO
Late Breaking Papers, pages 161–168. Citeseer, 2002.

C. Gagné i M. Parizeau. Genericity in evolutionary computation software tools: Principles and case-study. International
Journal on Artificial Intelligence Tools, 15(02):173–194, 2006.

F. Gebali. Algorithms and parallel computing. John Wiley & Sons, 2011.

L. Halada i M. Lucká. A Parallel Strongly Implicit Algorithm for Solving of Diffusion Equations. In P. Zinterhof,
M. Vajteršic, i A. Uhl, editors, Parallel Computation, pages 78–84, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
ISBN 978-3-540-49164-4.

N. Hansen. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

N. Hansen i A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary computation,
9(2):159–195, 2001.

P. Higuera. olaflow: Cfd for waves. https://olaflow.github.io/, 2017. Accessed: 01-November-2022.

J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, 1975.

IBM. IBM Spectrum LSF. https://www.ibm.com/docs/en/spectrum-lsf/10.1.0, 2022. Accessed: 01-January-
2022.

P. Jamieson, R. Ferreira, i J. A. M. Nacif. GA-lapagos, an open-source c framework including a python-based system
for data analysis. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pages 1589–1590,
2020.

Z. Jin, M. Krokos, M. Rivi, C. Gheller, K. Dolag, i M. Reinecke. High-performance astrophysical visualization using
Splotch. arXiv e-prints, art. arXiv:1004.1302, Apr. 2010. doi: 10.48550/arXiv.1004.1302.

https://cnrm.uniri.hr/bura/
https://olaflow.github.io/
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0

BIBLIOGRAPHY 193

M. Keijzer, J. J. Merelo, G. Romero, i M. Schoenauer. Evolving objects: A general purpose evolutionary computation
library. In International Conference on Artificial Evolution (Evolution Artificielle), pages 231–242. Springer, 2001.

M. J. Keith i M. C. Martin. Genetic programming in C++: Implementation issues. Advances in genetic programming, 1:
285–310, 1994.

J. R. Koza i R. Poli. Genetic programming. In Search methodologies, pages 127–164. Springer, 2005.

N. Krasnogor i J. Smith. MAFRA: A Java memetic algorithms framework, 2000.

T. Kruger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, i E. M. Viggen. The Lattice Boltzmann Method : Principles
and Practice. Springer International Publishing, 2017. ISBN 978-3-319-83103-9.

H. J. Leister i M. Perić. Vectorized Strongly Implicit Solving Procedure for a Seven-Diagonal Coefficient Matrix.
International Journal of Numerical Methods for Heat & Fluid Flow, 4(2):159–172, 1994. doi: 10.1108/EUM0000000004106.
URL https://doi.org/10.1108/EUM0000000004106.

D. Levine. Users guide to the PGAPack parallel genetic algorithm library. Argonne National Laboratory, 9700(S
8703941), 1996.

S. López Castaño, A. Petronio, G. Petris, i V. Armenio. Assessment of solution algorithms for les of turbulent flows
using openfoam. Fluids, 4(3):171, 2019.

S. Luke. Essentials of metaheuristics, volume 2. Lulu, 2013.

S. Luke. ECJ then and now. In Proceedings of the genetic and evolutionary computation conference companion, pages
1223–1230, 2017.

S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J. Bassett, R. Hubley, i A. Chircop. Ecj: A java-based evolutionary
computation research system. Downloadable versions and documentation can be found at the following url: http://cs. gmu.
edu/eclab/projects/ecj, 880, 2006.

E. Macagno. Fluid mechanics: experimental study of the effects of the passage of a wave beneath an obstacle.
Proceedings of the Academic des Sciences, 1953.

M. Manhart. A zonal grid algorithm for dns of turbulent boundary layers. Computers & Fluids, 33(3):435–461, 2004.

E. Medvet. Hierarchical grammatical evolution. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pages 249–250, 2017.

E. Medvet, A. Bartoli, A. De Lorenzo, i S. Seriani. 2D-VSR-Sim: a simulation tool for the optimization of 2-D
voxel-based soft robots. SoftwareX, 12:100573, 2020.

E. Medvet, A. Bartoli, F. Pigozzi, i M. Rochelli. Biodiversity in evolved voxel-based soft robots. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 129–137, 2021.

E. Medvet, G. Nadizar, i L. Manzoni. Jgea: a modular java framework for experimenting with evolutionary
computation. In Proceedings of the genetic and evolutionary computation conference companion, pages 2009–2018, 2022.

J.-J. Merelo, P. Castillo, A. Mora, A. Esparcia-Alcázar, i V. Rivas-Santos. NodEO, a multi-paradigm distributed
evolutionary algorithm platform in JavaScript. In Proceedings of the Companion Publication of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pages 1155–1162, 2014.

J. J. Merelo, P. A. Castillo, P. García-Sánchez, P. de las Cuevas, i M. García Valdez. NodIO: A Framework and
Architecture for Pool-based Evolutionary Computation. In Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, pages 1323–1330, 2016.

T. Misaka, F. Holzäpfel, I. Hennemann, T. Gerz, M. Manhart, i F. Schwertfirm. Vortex bursting and tracer transport of
a counter-rotating vortex pair. Phys. Fluids, 24(2):025104, feb 2012. ISSN 1070-6631. doi: 10.1063/1.3684990. URL
http://aip.scitation.org/doi/10.1063/1.3684990.

A. S. Monin i A. M. Yaglom. Statistical Fluid Mechanics. MIT Press, 1975.

A. Moosaie i M. Manhart. Direct monte carlo simulation of turbulent drag reduction by rigid fibers in a channel flow.
Acta Mechanica, 224(10):2385–2413, 2013.

J.-B. Mouret i J. Clune. Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909, 2015.

H. Mühlenbein, M. Schomisch, i J. Born. The parallel genetic algorithm as function optimizer. Parallel computing, 17
(6-7):619–632, 1991.

https://doi.org/10.1108/EUM0000000004106
http://aip.scitation.org/doi/10.1063/1.3684990

194 BIBLIOGRAPHY

G. Nadizar, E. Medvet, F. A. Pellegrino, M. Zullich, i S. Nichele. On the effects of pruning on evolved neural
controllers for soft robots. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages
1744–1752, 2021.

F. Nielsen. Introduction to HPC with MPI for Data Science. Springer, 2016.

R. Nieto-Fuentes i C. Segura. GP-DMD: a genetic programming variant with dynamic management of diversity.
Genetic Programming and Evolvable Machines, pages 1–26, 2022.

S. Nolfi. Behavioral and cognitive robotics: an adaptive perspective. Stefano Nolfi, 2021.

M. Nowostawski i R. Poli. Parallel genetic algorithm taxonomy. In 1999 Third International Conference on Knowledge-
Based Intelligent Information Engineering Systems. Proceedings (Cat. No. 99TH8410), pages 88–92. Ieee, 1999.

M. O’Neill i C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4):349–358, 2001.

OpenPBS. OpenPBS Open Source Project. https://www.openpbs.org/, 2020. Accessed: 01-January-2022.

E. Pantridge i L. Spector. PyshGP: PushGP in python. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1255–1262, 2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

N. Peller. Numerische Simulation turbulenter Str{\"o}mungen mit Immersed Boundaries Doktor-Ingenieurs. PhD thesis,
Technische Universit{\"a}t M{\"u}nchen, 2010.

N. Peller, A. L. Duc, F. Tremblay, i M. Manhart. High-order stable interpolations for immersed boundary methods.
International Journal for Numerical Methods in Fluids, 52(11):1175–1193, 2006.

S. B. Pope. Turbulent flows. Cambridge university press, 2000.

A. Rak, L. Grbcic, A. Sikirica, i L. Kranjcevic. Experimental and LBM analysis of medium-Reynolds number fluid
flow around NACA0012 airfoil. International Journal of Numerical Methods for Heat and Fluid Flow, ahead-of-print
(ahead-of-print), 2023. ISSN 09615539. doi: 10.1108/HFF-06-2022-0389/FULL/XML.

A. Ramírez, J. R. Romero, i S. Ventura. An extensible JCLEC-based solution for the implementation of multi-objective
evolutionary algorithms. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 1085–1092, 2015.

J. S. Reeve, A. Scurr, i J. H. Merlin. Parallel versions of stone’s strongly implicit algorithm. Concurrency and
Computation: Practice and Experience, 13(12):1049–1062, 2001.

P. Renc, P. Orzechowski, A. Byrski, J. Wăs, i J. H. Moore. EBIC. JL: an efficient implementation of evolutionary
biclustering algorithm in Julia. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages
1540–1548, 2021.

M. Rivi, C. Gheller, T. Dykes, M. Krokos, i K. Dolag. GPU accelerated particle visualization with Splotch. Astronomy
and Computing, 5:9–18, July 2014. doi: 10.1016/j.ascom.2014.03.001.

M. Roser, H. Ritchie, i E. Mathieu. Technological change. Our World in Data, 2022.
https://ourworldindata.org/technological-change.

A. Rummler. Evolvica: a Java framework for evolutionary algorithms, 2007.

A. Rummler i G. Scarbata. eaLib—A Java Frameword for Implementation of Evolutionary Algorithms. In International
Conference on Computational Intelligence, pages 92–102. Springer, 2001.

P. Ruol, L. Martinelli, i P. Pezzutto. Formula to predict transmission for π-type floating breakwaters. Journal of
Waterway, Port, Coastal, and Ocean Engineering, 139(1):1–8, 2013.

Y. Sakai i M. Manhart. Consistent flow structure evolution in accelerating flow through hexagonal sphere pack. Flow,
Turbulence and Combustion, 105(2):581–606, 2020.

Y. Sakai i M. Manhart. Simd-optimisation of the cfd software package mglet for supermuc-ng. https://www.konwihr.
de/konwihr-projects/simd-optimisation-of-the-cfd-software-package-mglet-for-supermuc-ng/, 2021.
Accessed: 2022-04-29.

Y. Sakai, S. Mendez, H. Strandenes, M. Ohlerich, I. Pasichnyk, M. Allalen, i M. Manhart. Performance optimisation
of the parallel cfd code mglet across different hpc platforms. In Proceedings of the Platform for Advanced Scientific
Computing Conference, pages 1–13, 2019.

https://www.openpbs.org/
https://www.konwihr.de/konwihr-projects/simd-optimisation-of-the-cfd-software-package-mglet-for-supermuc-ng/
https://www.konwihr.de/konwihr-projects/simd-optimisation-of-the-cfd-software-package-mglet-for-supermuc-ng/

BIBLIOGRAPHY 195

T. Salimans, J. Ho, X. Chen, S. Sidor, i I. Sutskever. Evolution strategies as a scalable alternative to reinforcement
learning. arXiv preprint arXiv:1703.03864, 2017.

W. Schanderl i M. Manhart. Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder.
Computers & Fluids, 128:16–29, 2016.

W. Schanderl, U. Jenssen, i M. Manhart. Near-wall stress balance in front of a wall-mounted cylinder. Flow, Turbulence
and Combustion, 99(3):665–684, 2017a.

W. Schanderl, U. Jenssen, C. Strobl, i M. Manhart. The structure and budget of turbulent kinetic energy in front of a
wall-mounted cylinder. Journal of Fluid Mechanics, 827:285–321, 2017b.

SchedMD. Slurm Workload Manager. https://slurm.schedmd.com/, 2021. Accessed: 01-January-2022.

E. O. Scott i S. Luke. ECJ at 20: toward a general metaheuristics toolkit. In Proceedings of the genetic and evolutionary
computation conference companion, pages 1391–1398, 2019.

H. J. Siegel. A model of simd machines and a comparison of various interconnection networks. IEEE Transactions on
Computers, 28(12):907–917, 1979.

R. E. Smith. A historical overview of computer architecture. IEEE Annals of the History of Computing, 10(04):277–303,
1988.

V. Springel, R. Pakmor, O. Zier, i M. Reinecke. Simulating cosmic structure formation with the gadget-4 code. Monthly
Notices of the Royal Astronomical Society, 506(2):2871–2949, 2021.

A. Stephan, F. Holzäpfel, i T. Misaka. Hybrid simulation of wake-vortex evolution during landing on flat terrain.
International Journal of Heat and Fluid Flow, 49:18–27, 2014.

A. Stephan, J. Schrall, i F. Holzäpfel. Numerical Optimization of Plate-Line Design for Enhanced Wake-Vortex Decay.
J. Aircr., 54(3):995–1010, may 2017. ISSN 0021-8669. doi: 10.2514/1.C033973. URL https://arc.aiaa.org/doi/10.
2514/1.C033973.

H. L. Stone. Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM
Journal on Numerical Analysis, 5(3):530–558, 1968.

R. Storn i K. Price. Differential evolution–a simple and efficient heuristic for global optimization over continuous
spaces. Journal of global optimization, 11(4):341–359, 1997.

H. Strandenes, B. Pettersen, H. I. Andersson, i M. Manhart. Influence of spanwise no-slip boundary conditions on
the flow around a cylinder. Computers & Fluids, 156:48–57, 2017.

M. Stürmer. Optimierung des Red-Black-Gauss-Seidel-Verfahrens auf ausgewählten x86-Prozessoren. Studienarbeit,
08 2005.

Y. Tang, Y. Tian, i D. Ha. EvoJAX: Hardware-Accelerated Neuroevolution. arXiv preprint arXiv:2202.05008, 2022.

The HDF Group. Hierarchical data format, version 5. http://www.hdfgroup.org/HDF5/, 1997-2020. Accessed:
01-November-2022.

TOP500.org. TOP500 lists. https://www.top500.org/, 2022. Accessed: 01-November-2022.

A. Törn i A. Žilinskas. Global optimization. Springer, 1989.

R. Trobec, B. Slivnik, P. Bulic, i B. Robic. Introduction to parallel computing: from algorithms to programming on
state-of-the-art platforms. Springer, 2020.

L. Unglehrt i M. Manhart. Onset of nonlinearity in oscillatory flow through a hexagonal sphere pack. J. Fluid Mech.,
944:A30, 2022. doi: 10.1017/jfm.2022.496.

L. Vanneschi, M. Castelli, i L. Manzoni. The k landscapes: a tunably difficult benchmark for genetic programming.
In Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages 1467–1474, 2011.

S. Ventura, C. Romero, A. Zafra, J. A. Delgado, i C. Hervás. JCLEC: a Java framework for evolutionary computation.
Soft computing, 12(4):381–392, 2008.

R. Verzicco i R. Camussi. Numerical experiments on strongly turbulent thermal convection in a slender cylindrical
cell. Journal of Fluid Mechanics, 477:19–49, 2003.

T. Weinzierl. Principles of Parallel Scientific Computing: A First Guide to Numerical Concepts and Programming Methods.
Springer Nature, 2021.

https://slurm.schedmd.com/
https://arc.aiaa.org/doi/10.2514/1.C033973
https://arc.aiaa.org/doi/10.2514/1.C033973
https://www.top500.org/

196 BIBLIOGRAPHY

P. A. Whigham. Grammatically-based genetic programming. In Proceedings of the workshop on genetic programming:
from theory to real-world applications, 1995.

D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, i
S. Luke. Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines,
14(1):3–29, 2013.

F. Wilhelmstötter. Jenetics: Java genetic algorithm library. Abgerufen am, 4, 2019.

J. H. Williamson. Low-storage runge-kutta schemes. Journal of Computational Physics, 35(1):48–56, 1980.

X.-s. Zhang, S. Ma, i W.-y. Duan. A new l type floating breakwater derived from vortex dissipation simulation. Ocean
Engineering, 164:455–464, 2018.

T. Zhu i M. Manhart. Oscillatory darcy flow in porous media. Transport in Porous Media, 111(2):521–539, 2016.

T. Zhu, C. Waluga, B. Wohlmuth, i M. Manhart. A study of the time constant in unsteady porous media flow using
direct numerical simulation. Transport in Porous Media, 104(1):161–179, 2014.

D. Zongker, B. Punch, i B. Rand. lil-gp 1.0 User’s Manual. Dept. of Computer Science, Michigan State University, 1, 1995.

Autorship
This manual is published under the following licenses:

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

https://creativecommons.org/licenses/by-nc-nd/4.0/

This license permits others to download this work and share it with others provided they list the authors, but
may not modify or use it for commercial purposes. For commercial use of this work seek permission of the authors.

Images used for chapter headers

◦ Cover image: Free to use under the Freepik License @ https://www.freepik.com/ (autor: kjpargeter)

◦ Contents image: Free to use under the Unsplash License @ https://unsplash.com/ (autor: Aaron Burden)

◦ Chapter Parallel programming image: Free to use under the Freepik License @ https://www.freepik.com/
(autor: pikisuperstar)

◦ Chapter References image: CC0 Creative Commons Zero (CC0) @ https://pixabay.com/en/book-open-
pages-library-books-408302/

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.freepik.com/
https://unsplash.com/
https://www.freepik.com/
https://pixabay.com/en/book-open-pages-library-books-408302/
https://pixabay.com/en/book-open-pages-library-books-408302/

	I Parallel computing
	Parallel systems
	Introduction
	Computer architecture
	Moore’s law
	Parallel computer architectures
	Network architectures
	Current trends

	Parallel programming
	Parallel programming concept
	Parallel program analysis
	Parallel programming models
	OpenMP and MPI
	GPU computing

	II Executing programs and code in HPC environment
	Workload managers
	Introduction
	SLURM
	PBS
	Alternative solutions

	Using the SLURM workload manager
	Introduction
	Commands
	Scripts
	Examples

	III Problems and examples
	OpenFOAM
	Introduction
	Creating a Linux environment on your computer
	Simulation of a bubble column reactor
	Simulation of complex fluid dynamic fields

	Altair CFD
	Introduction
	Numerical model
	Performance comparison

	MGLET
	CFD code MGLET
	Applications
	Performance optimisations

	Tree codes
	Introduction
	N-body simulations
	The tree algorithm
	The GADGET4 code
	Post-processing tools

	Evolutionary Computation with JGEA
	Evolutionary computation
	Evolutionary computation software
	JGEA structure and components
	Experimental evaluation: two case studies
	Concluding remarks

	References

