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Recently, a bank with millions of customers has noticed unusual amount of customers

leaving the bank. To make sure that this negative development will be stopped on

time, the bank first needs to identify the customers who have high likelihood to churn.

Identifying these customers will help the bank also to avoid repeating the same mistakes

with the rest of the customers and avoid them leaving the bank from the early stages.

In our analysis, we aim to predict the churning rate of the customers from the bank.

From the millions of customers we have randomly selected 10K customers. We will use

customer’s characteristics to determine his/her probability of leaving the bank. In order

to learn about bank’s customers we will make use of one of the Deep Learning techniques,

the Artificial Neural Networks (ANN). Moreover, we will use popular Python libraries

such as Tensorflow, Keras and Machine Learning techniques such as Adam Optimizer to

train the ANN model and predict the churn rates.

2 Data

The data contains 13 variables characterizing 10L bank customers. These variables are

CustomerId Surname, CreditScore, Geography Gender, Age, Tenure Balance, NumOf-

Products, HasCrCard, IsActiveMember, EstimatedSalary and Exited. The bank has also

observed these customers over the period of last 6 months to find out whether they left

the bank during this time or not. CustomerId and Surname are both string type of vari-

ables representing unique identifiers for the bank’s customers. Geography is a string type

of categorical variable, where the values have no sequential order, containing information

about the location of the customer. Additionally, Gender is another string variable, with

two possible values describing whether the customer is a male or female.

Furthermore, from the remaining variables, Age, Tenure, Balance, NumOfProducts,

and EstimatedSalary are all numerical variables where higher values represent higher

amounts. Additionally, the last 3 variables, HasCrCard, IsActiveMember, Exited, are

binary variables taking values 0 and 1. More specifically, if HasCrCard takes value 1

for a specific customer, this suggests that the customer has a Credit Card in the bank.

Moreover, if IsActiveMember takes value 1 for a customer, this suggests that this customer

is and active user of the bank’s services.

Aside from these deterministic variables, the bank has also observed its customers over

the period of last 6 months and based on this experiment, to create a dummy variable

which takes value 0 if the customer has left the bank during this observation period and

takes value 1 stayed as a customer of the bank during this time. This variable is referred

as Exited and will be used as dependent variable in our analysis.
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2.1 Data Preprocessing

Data Transformation: Encoding

Firstly, we perform transformation on a two string variables in the data to a numerical

variables. More specifically, we have transformed gender variable of stringType to a

binary numerical variable taking values {0,1}. To do this we use LabelEncoder from Scikit

learn library. Furthermore, we use OneHotEncoder from the same library, to transform

Geography variable, with multiple string values with country names, to a categorical

variable.

Data Normalization

Artificial Neural Networks are sensitive to the scale of the data. Therefore, we will use

StandardScaler from the Scikit learn library to scale the data. Given that the dependent

variable is a dummy variable that can only take values 0 and 1, we only need to scale the

features data, the set of all independent variables.

Data Splitting

In order to make sure we first train the model using only a part of the data and then use

the trained model to predict the values for the customers whose data have not been used

during the training. Therefore, we split the original data into train and test where 80%

of all customers fall in the train set whereas the 20% of the customers fall in the test set.

3 Methodology

The goal of this analysis is to segment bank’s customers into certain groups and identify

the customers with the highest chance to leave the bank. The Exited binary variable

will serve as a dependent variable in the process of identifying the leaving customers and

predicting the churn probabilities of these customers. This will help to understand the

reasons why customers leave and use this information on the existing customers to avoid

them leaving the bank.

Artificial Neural Networks

During the last decade, Deep Learning has become one of the most popular subfields

of the Machine Learning (3). It is a series of algorithms inspired by the structure and

function of the brain called Artificial Neural Networks (ANN). Deep Learning allows
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quantitative models composed of multiple processing layers to study the data represen-

tation with multiple levels of abstraction. It has drastically refined the state-of-the-art

in speech recognition, object detection, visual object recognition, and many other disci-

plines such as drug discovery and genomics.

The entire idea behind Deep Learning is to mimic how human brains work given that

the human brain is one of the most powerful tool for learning. When comparing to the

human brain, Neural Networks refer to systems of neurons, either organic or artificial in

nature. Neuron is the basic building block of the Neural Networks. Figure 1 visualizes

the architecture of a neuron. A neuron has a body, located in the left lower part of the

figure, with so branches emerging from it that are referred as Dendrites (the receiver of

the signal) and it has an Axon (the transmitters of the signals), which is that long tail

that connects the body of the neuron to the other neurons, which are often referred as

synapses in the Deep Learning terminology. Then the signals are passed to other recep-

Figure 1: The Architecture of Neuron

tors through these Synapses. Then the cell body sums all those input signals to generate

output. The same idea is used in the ANN. Multiple input signals, referred as Input

Layer Neurons, are transmitted to Hidden Layer Neurons, which on its turn are used to

predict the output, Output Layer. In the sense, input signals are similar to the human

senses, such as human sight, hearing, smelling, tasting and touching, only in the case of

ANN, those input signals can be various type of features characterizing an observation.

This process is visualized by the Figure 2 which shows an example of ANN with 3 input

signals forming the Input Layer Neurons set, 3 Hidden Layers and 1 Output Layer.

Neural networks adapt themselves to the changing input so that the network generates

the best possible result without the need to redesign the output criteria. The functional-

ity of neural networks is often compared to the one of the multiple linear regression, where

one uses multiple input features, also called independent variables, to predict the output
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Figure 2: The Architecture of Neuron

variable, the dependent variable. In case of Neural Network we also use input features,

referred as Input Layer Neurons to get information and learn about the outcome vari-

able, referred as Output Layer.The main difference between such regression and Neural

Network is that, in the case the former the process runs in one iteration by minimizing

the sum of the squared residuals (similar to cost function), whereas in case of Neural

Network there is an intermediate step portrayed by the Hidden Layer Neurons which are

used to get signals from the input layers and learn about the observations over and over

again until the goal is achieved, the cost is minimized and no improvement is possible.

So, one can say that ANNs are much more sophisticated than multiple linear regression.

Activation Function

As it was mentioned before, the cell body sums all the input signals to generate output.

This summation process is mimiced in ANN as well where we use a function to join

signals from different input neurons into one value. Each synapse get assigned a weight,

an importance value. These weights form the corner stone of how Neural Networks learn.

These weights determine whether the signals get passed along or not, or to what extent

each signal gets passed along. If we define the input value of signal i by xi and its

importance weight by wi then the sum of these signals, can be defined by”

φ
( m∑

i=1

wixi
)

where φ represents the activation function. This function is called Activation Function

and there are 4 common Activation Function used in Deep Learning: Threshold, Sigmoid,

Rectifier, and Hyperbolic Tangent Function. Following figure visualizes those 4 functions.



Tatev Karen Aslanyan

Figure 3: The Architecture of Neuron

1: Threshold Function

In case of the Threshold function, the possible values of the function are either 0 and 1.

If the summed value is smaller than o then the activation function will give as an output

0, otherwise it will give as an output 1. It’s very simple and straight forward activation

function with binary output.

φ
( m∑

i=1

wixi
)

=

1 if
∑m

i=1wixi ≥ 0

0 if
∑m

i=1wixi < 0

2: Sigmoid Function

Sigmoid function is based on similar function as the Logistic Regression does. The func-

tion is much smoother compared to the threshold function and is very useful when the

output value is expected to be a probability.

φ
( m∑

i=1

wixi
)

=
1

1 + e−
∑m

i=1 wixi
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3: Rectifier Function

This function is one of the most popular activation function in ANN which as an output

the maximum value of the summed amount and 0 (1).

φ
( m∑

i=1

wixi
)

= Max(0,
m∑
i=1

wixi)

4: Hyperbolic Tangent Function

This activation function is defined as the ratio between the hyperbolic sine and the cosine

functions (the ratio of the half-difference and half-sum of two exponential functions in

the points).

φ
( m∑

i=1

wixi
)

=
1− e−2

∑m
i=1 wixi

1 + e−2
∑m

i=1 wixi

The combination of the Rectifier and Sigmoid activation functions is quite popular and

this exact combination will be used in this case study as well, given that our goal is to

estimate the probability that the customer will leave the bank.

Cost Function Optimizers

Our goal during the ANN training process is to minimize the amount of error we are

making, the difference between the predicted value and the real value of the output

variable (y). So, in order to learn about these different signals is to predict the output

value of y, (yhat) then compute the cost associated with this iteration or epoch, determine

which set of weights at this stage will minimize the cost function, and use this to update

the weights. This process is repeated as much that the cost function is minimized as much

as possible. To determine which weights minimizes the cost function, different statistical

algorithms can be used such as Stochastic Gradient Decent (SGD) or Adam Optimizer.

SGD

SGD method, also known as Incremental Gradient Descent, is an iterative approach for

solving optimization problems with a differential objective function (4). The SGD method

is often referred as the stochastic approximation of the gradient descent which aims to find

the extreme or zero points of the stochastic model containing parameters that cannot be

directly estimated. Figure below demonstrates an example of an optimization problem

where GD and SGD are used. From the two black patters in the graph, the straight

pattern in the lower part corresponds to a standard Gradient Descent method where
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the parameters updates are done using all training points, whereas the black non-linear

pattern in the upper side with a lot of fluctuations, corresponds to the SGD method

where for the parameter updates only one training sample is used. With SGD reaching

the global maximum is likely to happen faster, because one starts making updates and

improving the direction of the pattern using a single training sample. Due to so many

updates (fluctuations in the pattern in the direction of reaching global optimum point)

SGD is likely to converge faster compared to the GD. Both SGD and GD suffer from the

problem of reaching a local optimum instead of the global optimum. However, in case

of SGD the likelihood of reaching a local optimum instead of global optimum is higher

compared to the GD, because of its constant changes in moving direction. From Figure 4

we observe that it is likely that the fluctuating black pattern, corresponding to the SGD,

will end up in L instead of G while changing his moving direction so often. Whereas, it

is less likely that the straight pattern, corresponding to the GD, will end up in L, while

both patterns have the same starting point.

Figure 4: SGD and GD method. The lower straight black pattern in the direction of
the global maxima, corresponds to the standard Gradient Descent method. The upper
non-linear black pattern to the Stochastic Gradient Descent method. https://blog.

paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Adam Optimizer

A popular technique for enhancing SGD optimization procedure is the Adaptive Moment

Estimation (Adam) introduced by (2). Adam is the extended version of the SGD with

momentum method. The main difference of it compared to the SGD with momentum,

which uses a single learning rate for all parameter updates, Adam algorithm defines

different learning rates for different parameters. The algorithm calculates the individual

adaptive learning rates for each parameter based on the estimates of the first two moments

of the gradients. So, each parameter has a unique learning rate, which is being updated

using the exponential decaying average of the first moments (the mean) and second

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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moments (the variance) of the gradients. For all mentioned benefits of Adam optimizer

compared to the GD and SGD, we will use Adam Optimizer in this analysis as a way to

minimize the loss function and update the weights.

4 Analysis and Results

For the entire analysis, from data preparation till evaluation of the results, we will use

Python. Firstly, we initialize the ANN by calling the Sequential class from Keres library.

Keras comes in combination with Tensorflow library. Both of them will be used in this

analysis. Secondly, ee then add fully connected Input Layer to the Sequential ANN by

calling Dense class from Keras. Furthermore, we add fully connected Output Layer to

the Sequential ANN by calling Dense class from Keras once again. For the first transition

we use the Rectifier activation function. Furthermore, for the the second layer, to get

the output from the ANN, we use the Sigmoid activation function, because our goal is to

predict the probability that the customer will leave the bank and as it was mentioned in

the previous section Sigmoid type of functions give an output with value between 0 and

1, like in case of probabilities.

Additionally, we use the Adam Optimizer to determine the set of weights for each epoch

and because the output variable is a dummy variable, we use the Binary Cross Entropy

as a cost function. Given that the focus of this study is of more descriptive nature, we

don’t prune the model parameters such as the batch size or number of epochs, therefore,

we use the default value 32 for the batch size and 100 for the number of epochs.

Training and Testing ANN model

We will train the model using the training dataset of the features, characteristics of the

customers in the training set, (Xtrain), the and the training output variable, dummy

variable identifying whether the customers in the training set has left the bank during

the last 6 months, (Ytrain). Once we have trained the ANN model, we use this fitted

model and the test data to predict the output value for the test users, for each customer

in the test set the probability of leaving the bank (Ŷtest). Given that the original output

data field is in the form of the dummy variable, we need to transform the output with the

probabilities values to a binary variable. For this we will the following transformation:

Ytest =

1 Ŷtest ≥ k

0 Ŷtest < k
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Depending on how sever can be the consequences when prediction mistakes are made,

one can decide the threshold k accordingly. In this analysis we will use threshold equal

to 0.5 (k = 0.5) which means that if the output probability from the model is larger or

equal to 0.5, that is the customer has larger than 0.5 chance to leave the bank, than the

dummy variable Ŷtest takes value 1, and 0 otherwise.

Evaluation

From the previous step we obtained a dummy variable for the test users based on the

predicted probabilities (Ŷtest). Furthermore, we have in our data the true output values

of these test users (Ytest). By comparing these two set of values, predicted output values

and the true output values, per user with a goal to find out the accuracy of the model, in

this case the percentage of customers for which the model has made a good prediction.

The model has showed accuracy of 0.86 which means that the model managed to correctly

predict whether the customer will leave the bank or not in 86 out of 100 cases (2K test

users in total).

Confusion Matrix

To find out more about the performance of the model and more specifically about the

false positives and false negatives, we use the Scikit learn library to obtain the following

confusion matrix corresponding to the model.(
1510 85

197 208

)
What we observe is that for 1510 customers who actually left the bank, the model was

able to correctly predict that. Moreover, for 208 customers the model correctly predicted

that they have not left the bank. For 85 customers the model predicted that they have

left the bank while they didn’t (False Positives) and for 197 cases the model predicted

that the customers have not left the bank while they actually did (False negatives).
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